1887

Abstract

Rifamycin B biosynthesis in N/813 was inactivated by introducing a small deletion in the gene situated directly downstream of the rifamycin polyketide synthase (PKS) gene cluster. The corresponding mutant strain produced a series of linear intermediates of rifamycin B biosynthesis that are most probably generated by obstruction of the normal release of the end product of the rifamycin PKS. This result provides evidence that the gene product catalyses the release of the completed linear polyketide from module 10 of the PKS and the intramolecular macrocyclic ring closure by formation of an amide bond, as indicated by sequence similarity of this protein to amide synthases. The chemical structures of the new rifamycin polyketide synthase intermediates released from modules 4 to 10 were determined by spectroscopic methods (UV, IR, NMR and MS) and gave insight into the reaction steps of rifamycin ansa chain biosynthesis and the timing of the formation of the naphthoquinone ring. The intermediates released from modules 6 and 8 were isolated as lactones formed by the terminal carboxyl group; proton NMR double resonance and ROESY(rotated frame nuclear Overhauser enhancement spectroscopy) experiments enabled the deduction of the relative configurations in the linear chain which correspond to the known absolute stereochemistry of rifamycin B.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3365
1999-12-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453365a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3365&mimeType=html&fmt=ahah

References

  1. August P. R., Tang L., Yoon Y. J.9 other authors 1998; Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5:69–79 [CrossRef]
    [Google Scholar]
  2. Bachs L., Pares A., Elena M., Piera C., Rodes J. 1992; Effects of long-term rifampicin administration in primary biliary cirrhosis. Gastroenterology 102:2077–2080
    [Google Scholar]
  3. Barakett V., Lesage D., Delisle F., Vergez P., Petit J. C. 1993; Killing kinetics of vancomycin and rifamycin tested alone and in combination against penicillin-resistant Streptococcus pneumoniae. . Eur J Clin Microbiol Infect Dis 12:69–71 [CrossRef]
    [Google Scholar]
  4. Blondelet-Rouault M.-H., Weiser J., Lebrihi A., Branny P., Pernodet J.-L. 1997; Antibiotic resistance gene cassettes derived from the Ω interposon for use in E. coli and Streptomyces. Gene 190:315–317 [CrossRef]
    [Google Scholar]
  5. Brufani M., Fedeli W., Giacomello G., Vaciago A. 1964; The X-ray analysis of the structure of rifamycin B. Experientia 20:339–342 [CrossRef]
    [Google Scholar]
  6. Butler A. R., Bate N., Cundliffe E. 1999; Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae. . Chem Biol 6:287–292 [CrossRef]
    [Google Scholar]
  7. Chen S., von Bamberg, D., Hale, V., Breuer, M., Hardt, B., Müller, R., Floss H. G., Reynolds K. A., Leistner E. 1999; Biosynthesis of ansatrienin (mycotrienin) and naphthomycin: identification and analysis of two separate biosythetic gene clusters in Streptomyces collinus T ü 1892. Eur J Biochem 261:98–107 [CrossRef]
    [Google Scholar]
  8. Ghisalba O., Traxler P., Nüesch J. 1978; Early intermediates in the biosynthesis of ansamycins. I. Isolation and identification of protorifamycin I. J Antibiot 31:1124–1131 [CrossRef]
    [Google Scholar]
  9. Ghisalba O., Traxler P., Fuhrer H., Richter W. J. 1979; Early intermediates in the biosynthesis of ansamycins. II. Isolation and identification of proansamycins B-M1 and protorifamycin I-M1. J Antibiot 32:1267–1272 [CrossRef]
    [Google Scholar]
  10. Ghisalba O., Fuhrer H., Richter W. J., Moss S. 1981; A genetic approach to the biosynthesis of the rifamycin chromophore in Nocardia mediterranei. III. Isolation and identification of an early aromatic ansamycin precursor containing the seven-carbon amino starter-unit and three initial acetate/propionate units of the ansa chain. J Antibiot 34:58–63 [CrossRef]
    [Google Scholar]
  11. Ghisalba O., Auden J. A. L., Schupp T., Nüesch J. 1984; The rifamycins: properties, biosynthesis, and fermentation. In Biotechnology of Industrial Antibiotics pp. 281–327Edited by Vandamme E. J. New York & Basel: Marcel Dekker;
    [Google Scholar]
  12. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  13. Huber M. L., B., Paschal J. W., Leeds J. P., Kirst H. A., Wind J. A., Miller F. D., Turner J. R. 1990; Branched-chain fatty acids produced by mutants of Streptomyces fradiae, putative precursors of the lactone ring of tylosin. Antimicrob Agents Chemother 34:1535–1541 [CrossRef]
    [Google Scholar]
  14. Hunziker D., Yu, T.-W., Hutchinson C. R., Floss H. G., Khosla C. 1998; Primer unit specificity in rifamycin biosynthesis principally resides in the later stages of the biosynthetic pathway. J Am Chem Soc 120:1092–1093 [CrossRef]
    [Google Scholar]
  15. Kinoshita K., Takenaka S., Hayashi M. 1988; Isolation of proposed intermediates in the biosynthesis of mycinamicins. J Chem Soc Chem Commun 1988:943–945
    [Google Scholar]
  16. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68 [CrossRef]
    [Google Scholar]
  17. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Oppenheim B., Koornhof H. J., Austrian R. 1986; Antibiotic-resistant pneumococcal disease in children at Baragwanath hospital, Johannesburg. . Pediatr Infect Dis 5:520–524 [CrossRef]
    [Google Scholar]
  19. Pospiech A., Neumann B. 1995; A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 11:217–218 [CrossRef]
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Manniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Schupp T., Divers M. 1986; Protoplast preparation and regeneration in Nocardia mediterranei. FEMS Microbiol Lett 36:159–162 [CrossRef]
    [Google Scholar]
  22. Schupp T., Toupet C., Engel N., Goff S. 1998; Cloning and sequence analysis of the putative rifamycin polyketide synthase gene cluster from Amycolatopsis mediterranei. FEMS Microbiol Lett 159:201–207 [CrossRef]
    [Google Scholar]
  23. Szabo C., Bissel M. J., Calvin M. 1976; Inhibition of infectious rous sarcoma virus production by a rifamycin derivative. J Virol 18:445–453
    [Google Scholar]
  24. Tang L., Yoon Y. J., Choi C.-Y., Hutchinson C. R. 1998; Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei. Gene 216:255–265 [CrossRef]
    [Google Scholar]
  25. Wehrli W. 1977; Ansamycins: chemistry, biosynthesis and biological activity. Topics Curr Chem 72:21–49
    [Google Scholar]
  26. Yu, T.-W., Shen, Y., Doi-Katayama, Y., Tang, L., Park, C., Moore B. S., Hutchinson C. R., Floss H. G. 1999; Direct evidence that the rifamycin polyketide synthase assembles polyketide chains processively. Proc Natl Acad Sci USA 96:9051–9056 [CrossRef]
    [Google Scholar]
  27. Zimmerli W., Widmer A. F., Blatter, M., Frei R., Ochsner P. E. 1998; Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. J Am Med Assoc 279:1537–1541 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3365
Loading
/content/journal/micro/10.1099/00221287-145-12-3365
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error