1887

Abstract

A 5 kb region upstream of at 82°G on the chromosome contains five ORFs organized in an operon-like structure. Based on sequence similarity, three of the ORFs are likely to encode an ABC transport system and another to encode a monooxygenase The deduced amino acid sequence of the last ORF shows no similarity to any known protein. can utilize a range of aliphatic sulfonates such as alkanesulfonates, taurine, isethionate and sulfoacetate as a source of sulfur, but not when and are disrupted by insertion of a neomycin-resistance gene. Utilization of aliphatic sulfonates was not affected in a strain lacking 3′-phosphoadenosine 5′-phosphosulfate (PAPS) sulfotransferase, indicating that sulfate is not an intermediate in the assimilation of sulfonate-sulfur. Sulfate or cysteine prevented expression of β-galactosidase from a transcriptional fusion. It is proposed that encode a system for ATP-dependent transport of alkanesulfonates and an oxygenase required for their desulfonation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-9-2555
1998-09-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/9/mic-144-9-2555.html?itemId=/content/journal/micro/10.1099/00221287-144-9-2555&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. . J Bacteriol 81:741–746
    [Google Scholar]
  2. Ausubel F.M., Brent R., Kingston R.E., Moore D.E., Seidman J.G., Smith J.A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  3. Autry A. R., Fitzgerald J. W. 1990; Sulfonate S: a major form of forest soil organic sulfur.. Biol Fertil Soils 10:50–56
    [Google Scholar]
  4. Beil S., Kehrli H., James P., Staudenmann W., Cook A.M., Leisinger T., Kertesz M.A. 1995; Purification and characterization of the arylsulfatase synthesized by Pseudomonas aeruginosa PAO during growth in sulfate-free medium and cloning of the arylsulfatase gene (atsA).. Eur J Biochem 229:385–394
    [Google Scholar]
  5. Beil S., Kertesz M.A., Leisinger T., Cook A.M. 1996; Theassimilation of sulfur from multiple sources and its correlation with expression of the sulfate-starvation-induced stimulon in Pseudomonas putida S-313.. Microbiology 142:1989–1995
    [Google Scholar]
  6. Blanc V., Lagneaux D., Didier P., Gil P., Lacroix P., Crouzet J. 1995; Cloning and analysis of structural genes from Strepto- myces pristinaespiralis encoding enzymes involved in the conversion of pristinamycin IIB to pristinamycin IIA (PIIA): PIIA synthase and NADH: riboflavin 5′-phosphate oxidoreductase.. J Bacteriol 177:5206–5214
    [Google Scholar]
  7. Cummings N.J., Connerton I.F. 1997; The Bacillus subtilis 168 chromosome from sspE to katA. . Microbiology 143:1855–1859
    [Google Scholar]
  8. Cutting S.M., Youngman P. 1994; Gene transfer in Grampositive bacteria.. In Methods for General and Molecular Bacteriology pp. 348–364 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  10. Eichhorn E., van der Ploeg J.R., Kertesz M.A., Leisinger T. 1997; Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. . J Biol Chem 272:23031–23036
    [Google Scholar]
  11. Higgins C.F. 1992; ABC transporters: from micro-organisms to man.. Annu Rev Cell Biol 8:67–113
    [Google Scholar]
  12. Higgins T.P., Davey M., Trickett J., Kelly D.P., Murrell J.C. 1996; Metabolism of methanesulfonic acid involves a multicomponent monooxygenase enzyme.. Microbiology 142:251–260
    [Google Scholar]
  13. Huxtable R.J. 1992; Physiological actions of taurine.. Physiol Rev 72:101–163
    [Google Scholar]
  14. Itaya M., Kondo K., Tanaka T. 1989; A neomycin resistance gene cassette selectable in a single copy state in the Bacillus subtilis chromosome.. Nucleic Acids Res 17:4410
    [Google Scholar]
  15. Iwanicka-Nowicka R., Hryniewicz M.M. 1995; A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon.. Gene 166:11–17
    [Google Scholar]
  16. Kelly D.P., Malin G., Wood A.P. 1993; Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulfur, nitrogen or halogens.. In Microbial Growth on C1Compounds pp. 47–63 Murrell J. C., Kelly D. P. Edited by Andover: Intercept;
    [Google Scholar]
  17. Kertesz M.A. 1996; Desulfonation of aliphatic sulfonates by Pseudomonas aeruginosa PAO.. FEMS Microbiol Lett 137:221–225
    [Google Scholar]
  18. Knobel H.-R., Egli T., van der Meer J.R. 1996; Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Cbelatobacter heintzii ATCC 29600.. J Bacteriol 178:6123–6132
    [Google Scholar]
  19. Kredich N.M. 1996; Biosynthesis of cysteine.. In Escherichia coli and Salmonella: Cellular and Molecular Biology,, 2nd. pp. 514–527 Neidhart F.C. Edited by others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Kunst F., Ogasawaka N., Mozer I. 148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis.. Nature 390:249–256
    [Google Scholar]
  21. McLaughlin J.R., Murray C.L., Rabinowitz J.C. 1981; Unique features in the ribosome-binding site sequence of the Grampositive Staphylococcus aureus β-lactamase gene.. J Biol Chem 256:11283–11291
    [Google Scholar]
  22. Mansilla M.C., de Mendoza D. 1997; l-Cysteine biosynthesis in Bacillus subtilis: identification, sequencing, and functional characterization of the gene encoding phosphoadenylylsulfate sulfotransferase.. J Bacteriol 179:976–981
    [Google Scholar]
  23. Miller J.H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Pasternak C.A., Ellis R.J., Jones-Mortimer M.C., Crichton C.E. 1965; The control of sulfate reduction in bacteria.. Biochem J 96:270–275
    [Google Scholar]
  25. Pearson W.R., Lipman D.J. 1988; Improved tools for biological sequence comparison.. Proc Natl Acad Sci USA: 85:2444–2448
    [Google Scholar]
  26. vanderPloeg J.R., Weiss M.A., Sailer E., Nashimoto H., Saito N., Kertesz M.A., Leisinger T. 1996; Identification of sulfate starvation regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source.. J Bacteriol 178:5438–5446
    [Google Scholar]
  27. van der Ploeg J.R., Iwanicka-Nowicka R., Kertesz M.A., Leisinger T., Hryniewicz M.M. 1997; Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. . J Bacteriol 179:7671–7678
    [Google Scholar]
  28. Quick A., Russell N.J., Hales S.G., White G.F. 1994; Biodegradation of sulphosuccinate: direct desulphonation of a secondary sulphonate.. Microbiology 140:2991–2998
    [Google Scholar]
  29. Quirk P.G., Guffanti A.A., Clejan S., Cheng J., Krulwich T.A. 1994; Isolation of Tn917 insertional mutants of Bacillus subtilis that are resistant to the protonophore carbonyl cyanide m- chlorophenylhydrazone.. Biochim Biophys Acta 1186:27–34
    [Google Scholar]
  30. Seitz A.P., Leadbetter E.R., Godchaux W. III 1995; Utilization of sulfonates as sole sulfur source by soil bacteria including Comamonas acidovorans. . Arch Microbiol 159:440–444
    [Google Scholar]
  31. Thompson J.D., Higgins D.G., Gibson T.J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  32. Thysse G.J.E., Wanders T.H. 1974; Initial steps in the degradation of n-alkane-l-sulfonates by Pseudomonas. . Antonie Leeuwenhoek 40:25–37
    [Google Scholar]
  33. Uria-Nickelsen M.R., Leadbetter E.R., Godchaux W. III 1993; Sulphonate utilization by enteric bacteria.. J Gen Microbiol 139:203–208
    [Google Scholar]
  34. Uria-Nickelsen M.R., Leadbetter E.R., Godchaux W. III 1994; Sulfonate-sulfur utilization involves a portion of the assimilatory sulfate reduction pathway in Escherichia coli. . FEMS Microbiol Lett 123:43–48
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-9-2555
Loading
/content/journal/micro/10.1099/00221287-144-9-2555
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error