1887

Abstract

The function of the gene encoding the ferritin from was investigated using the Fur titration assay (FURTA) in and by characterization of a -deficient mutant strain of Nucleotide sequence analysis revealed that the region is conserved among strains (>95% nucleotide identity). Two transcriptional start sites, at least one of them preceded by a s-dependent promoter, were identified. Provision of the gene on a multicopy plasmid resulted in reversal of the Fur-mediated repression of the gene in thus enabling the use of the FURTA for cloning of the ferritin gene. Inactivation of the gene, either by insertion of a resistance cassette or by deletion of the up- and downstream segments, abolished this function. Immunoblot analysis with a Pfr-specific antiserum detected the Pfr protein in and in carrying the gene on a plasmid. Pfr-deficient mutants of were generated by marker-exchange mutagenesis. These were more susceptible than the parental strain to killing by various metal ions including iron, copper and manganese, whereas conditions of oxidative stress or iron deprivation were not discriminative. Analysis by element-specific electron microscopy revealed that growth of in the presence of iron induces the formation of two kinds of cytoplasmic aggregates: large vacuole-like bodies and smaller granules containing iron in association with oxygen or phosphorus. Neither of these structures was detected in the -deficient mutant strain. Furthermore, the ferritin accumulated under iron overload and the -deficient mutant strains lacked expression of a 12 kDa protein which was negatively regulated by iron in the parental strain. The results indicate that the nonhaem-iron ferritin is involved in the formation of iron-containing subcellular structures and contributes to metal resistance of Further evidence for an interaction of ferritin with iron-dependent regulation mechanisms is provided.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-9-2505
1998-09-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/9/mic-144-9-2505.html?itemId=/content/journal/micro/10.1099/00221287-144-9-2505&mimeType=html&fmt=ahah

References

  1. Asaka M., Kimura T., Kato M., Kudo M., Miki M., Ogoshi K., Kato T., Tatsuga M., Graham D.Y. 1994; Possible role of Helicobacter infection in early gastric cancer development.. Cancer 73:2691–2694
    [Google Scholar]
  2. Atherton J.C., Cao P., Peek R.M., Tummuru M.K.R., Blaser J.M., Cover T.L. 1995; Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. . J Biol Chem 270:17771–17777
    [Google Scholar]
  3. Bereswill S., Geider K. 1997; Characterization of the rcsB gene from Erwinia amylovora and its influence on exopolysaccharide synthesis and virulence of the fire blight pathogen.. J Bacteriol 179:1354–1361
    [Google Scholar]
  4. Bereswill S., Fassbinder F., Voelzing C., Haas R., Reuter K., Ficner R., Kist M. 1997a; Cloning and functional characterization of the genes encoding 3-dehydroquinate synthase {aroB) and tRNA-guaninc transglycosylase {tgt) from Helicobacter pylori. . Med Microbiol Immunol 186:125–134
    [Google Scholar]
  5. Bereswil S., Fassbinder F., Strobel S., Lichte F., Fassbinde F., Kist M. 1997b; Evaluation of microbiological parameters for the study of iron metabolism in Helicobacter pylori. . Gut 41: (Suppl. 1)), A10
    [Google Scholar]
  6. Bereswill S., Fassbinder F., Voelzing C., Covacci A., Haas R., Kist M. 1998a; Hemolytic properties and riboflavin synthesis of Helicobacter pylori: cloning and functional characterization of the ribA gene encoding GTP-cyclohydrolase II that confers hemolytic activity to Escherichia coli. . Med Microbiol Immunol 186:177–187
    [Google Scholar]
  7. Bereswill S., Lichte F., Vey T., Fassbinder F., Kist M. 1998b; Cloning and characterization of the fur gene from Helicobacter pylori. . FEMS Microbiology Lett 159:193–200
    [Google Scholar]
  8. Bezkorovainy A. 1987; Iron proteins.. In Iron and Infection: Molecular, Physiological and Clinincal Aspects pp. 51–55 Chichester: Wiley;
    [Google Scholar]
  9. Bode G., Mauch F., Ditschuneit H., Malfertheiner P. 1993; Identification of structures containing polyphosphate in Helicobacter pylori. . J Gen Microbiol 139:3029–3033
    [Google Scholar]
  10. Buck G.E. 1990; Camplyobacter pylori and gastroduoenal disease.. Clin Microbiol Rev 3:1–12
    [Google Scholar]
  11. Bukanov N.O., Berg D.E. 1994; Ordered cosmid library and high resolution physical genetic map of Helicobacter pylori strain NCTC 135136638.. Mol Microbiol 11:509–523
    [Google Scholar]
  12. Censini S., Lange C., Xiang Z., Crabtree J.E., Ghiara P., Borodovsky M., Rappuoli R., Covacci A. 1996; Cag, a pathogenicity island of Helicobacter pylori, encodes type I- specific and disease-associated virulence factors.. Proc Natl Acad Sci USA 93:14648–14653
    [Google Scholar]
  13. Chirgwin J.M., Przybyla A.E., MacDonald R.J., Rutter W.J. 1979; Isolation of biological active ribonucleic acid from sources enriched in ribonuclease.. Biochemistry 18:5294–5299
    [Google Scholar]
  14. Dhaenens L., Szczebara F., Husson M.O. 1997; Identification, characterization, and immunogenicity of the lactoferrin-binding protein from Helicobacter pylori. . Infect Immun 65:514–518
    [Google Scholar]
  15. Doig P.J., Austin W., Trust T.J. 1993; The Helicobacter pylori 19.6-kilodalton protein is an iron-containing protein resembling ferritin. . J Bacteriol 175:557–560
    [Google Scholar]
  16. Earhart C.F. 1996; Uptake and metabolism of iron and molybdenum.. In Escherichia coli and Salmonella typhimurium : Cellular and Molecular Biology, 2nd. 1 pp. 1075–1090 Neidhardt F. C. and others. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Evans D.J., Evans D.G., Takemura T., Nakano H., Lampert H.C. 1995b; Characterization of a Helicobacter pylori neutrophil-activating protein.. Infect Immun 63:2253–2220
    [Google Scholar]
  18. Evans D.J., Evans D.G., Lampert H.C., Nakano H. 1995b; Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilis. Bacillus subtilis and Treponema pallidum, by analysis of gene sequences.. Gene 153:123–127
    [Google Scholar]
  19. Forman D. 1996; Helicobacter pylori and gastric cancer.. Scand J Gastroenterol 220:23–26
    [Google Scholar]
  20. Frazier B.A, Peifet J.D., Russell D.G., Falk P., Olsen A.N, Hammar M., Westblorn S.J. 1993; Para- crystalline inclusions of a novel ferritin containing nonheme iron, produced by the human gastric pathogen Helicobacter pylori: evidence for a third class of ferritins. . J Bacteriol 175:966–972
    [Google Scholar]
  21. Genco C.A., Desai P.J. 1996; Iron acquisition in the pathogenic Neisseria.. Trends Microbiol 4:179–184
    [Google Scholar]
  22. Harrison P.M. 1996; The ferritins: molecular properties, iron storage function and cellular regulation.. Biochim Biophys Acta 1275:161–203
    [Google Scholar]
  23. Hempstead P.D., Hudson A.J., Artyniuk P.J., Andrews S.C., Banfield M.J., Guest J.R., Harrison P.M. 1994; Direct observation of the iron-binding sites in a ferritin.. FEBS Lett 350:258–262
    [Google Scholar]
  24. Hughes N.J., Kelly D.J., Clayton C.L., Chalk P.A. 1997; Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate: flavodoxin and 2-oxoglutarate: acceptor oxido- reductases which mediate electron transport to NADP.. J Bacteriol 180:1119–1128
    [Google Scholar]
  25. Husson M.O., Legrand D., Spik G., Leclerc H. 1993; Iron acquisition by Helicobacter pylori: importance of human lacto- ferrin.. Infect Immun 61:2694–2697
    [Google Scholar]
  26. Izuhara M., Takamune K., Takata R. 1991; Cloning and sequencing of an Escherichia coli gene which encodes a polypeptide having similarity to the human ferritin H subunit.. Mol Gen Genet 225:510–513
    [Google Scholar]
  27. Jiang Q., Hiratsuka K., Taylor D.E. 1996; Variability of gene order in different Helicobacter pylori strains contributes to genome diversity.. Mol Microbiol 20:833–842
    [Google Scholar]
  28. Kahrs A.F., Odenbreit S., Schmitt W., Heuermann D., Meyer T.F., Haas R. 1995; An improved TnMax mini-transposon system suitable for sequencing, shuttle mutagenesis and gene fusions.. Gene 167:53–57
    [Google Scholar]
  29. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of the bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  30. Lee A., Fox J., Hazell S. 1993; Pathogenicity of Helicobacter pylori: a perspective.. Infect Immun 61:1601–1610
    [Google Scholar]
  31. Litwin C.M., Calderwood S.B. 1993; Role of iron in regulation of virulence genes.. Clin Microbiol Rev 6:137–149
    [Google Scholar]
  32. Miller J.H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Miller R.A., Britigan B.E. 1997; Role of oxidants in microbial pathophysiology. . Clin Microbiol Rev 10:1–18
    [Google Scholar]
  34. Odenbreit S., Till M., Haas R. 1996a; Optimized BlaM- transposon shuttle mutagenesis of Helicobacter pylori allows the identification of novel genetic loci involved in bacterial virulence.. Mol Microbiol 20:361–373
    [Google Scholar]
  35. Odenbreit S., Wieland B., Haas R. 1996b; Cloning and genetic characterization of Helicobacter pylori catalase and construction of a catalase-deficient mutant strain.. J Bacteriol 178:6960–6967
    [Google Scholar]
  36. Pohlner J., Krámer J., Meyer T.F. 1993; A plasmid system for high-level expression and in vitro processing of recombinant proteins.. Gene 130:121–126
    [Google Scholar]
  37. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Schaeffer S., Hantke K., Braun V. 1985; Nucleotide sequence of the iron regulatory gene fur. . Mol Gen Genet 200:110–113
    [Google Scholar]
  39. Southern E.M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis.. J Mol Biol 98:503
    [Google Scholar]
  40. Spiegelhalder C., Gerstenecker B., Kersten A., Schiltz E., Kist M. 1993; Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene.. Infect Immun 61:5315–5325
    [Google Scholar]
  41. Stojiljkovic I., Báumler A.J., Hantke K. 1994; Fur regulon in gram-negative bacteria: identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay.. J Mol Biol 236:531–545
    [Google Scholar]
  42. Strobel S., Bereswill S., Allgaier P., Balig P., Sonntag H.-G., Kist M. 1998; Identification and analysis of a new vacA genotype variant of Helicobacter pylori in different patient groups in Germany.. J Clin Microbiol 36:1285–1289
    [Google Scholar]
  43. Taylor D.E. 1996; Diversity among Helicobacter pylori isolates.. J Clin Microbiol 34:1041
    [Google Scholar]
  44. Tomb J.F., White O., Kerlavage A.R. oher authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori. . Nature 388:539–547
    [Google Scholar]
  45. Touati D., Jacques M., Tardat B., Bouchard L., Despied S. 1995; Lethal oxidative damage and mutagenesis are generated by iron in DELTA-fur mutants of Escherichia coli: protective role of superoxide dismutase.. J.Bacteriol 177:2305–2314
    [Google Scholar]
  46. Velayudhan J., Hughes N.J., Andrews S.C., Clayton C.L., Kelly D.J. 1997; Iron acquisition in Helicobacter pylori: characterization of tbpk, feck, and exbB homologues. . Gut 41 (Suppl. 1), A109.
    [Google Scholar]
  47. Wai S.N., Takata T., Takata A., Hamasak N., Amako K. 1995; Purification and characterization of ferritin from Campylobacter jejuni. . Arch Microbiol 164:1–6
    [Google Scholar]
  48. Wai S.N., Nakayama K., Umene K., Moriya T., Amako K. 1996; Construction of a ferritin-deficient mutant of Campylobacter jejuni: contribution of ferritin to iron storage and protection against oxidative stress.. Mol Microbiol 20:1127–1134
    [Google Scholar]
  49. Wai S.N., Nakayama K., Takade A., Amako K. 1997; Overproduction of Campylobacter ferritin in Escherichia coli and induction of paracrystalline inclusions by ferrous compound.. Microbiol Immunol 41:461–67
    [Google Scholar]
  50. Worst D.J., Otto B.R., de Graff j. 1995; Iron-repressible outer membrane proteins of Helicobacter pylori involved in heme uptake.. Infect Immun 63:4161–165
    [Google Scholar]
  51. Worst D.J., Sparrius M., Kuipers E.J., Kusters J.G., deGraaff J. 1996; Human serum antibody response against iron-repressible outer membrane proteins of Helicobacter pylori. . FEMS Microbiol Lett 144:29–32
    [Google Scholar]
  52. Yariv J., Kalb A.J., Sperling R., Bauminger E.R., Cohen S.G., Ofer S. 1981; The composition and the structure of the bacterioferritin of Escherichia coli. . Biochem J 197:171–175
    [Google Scholar]
  53. Zimmermann L., Angerer A., Braun V. 1989; Mechanistically novel iron-III transport system in Serratia marcescens. . J Bacteriol 171:238–243
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-9-2505
Loading
/content/journal/micro/10.1099/00221287-144-9-2505
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error