1887

Abstract

Bacteriophage λ is unable to lysogenize hosts harbouring the mutation due to a drastic reduction in transcription from CII-activated lysogenic promoters ( , and ). In addition, the level of early transcripts involved in the lytic pathway of λ development is also decreased in this genetic background due to impaired N-dependent antitermination. Here, it is demonstrated that despite the reduced level of early lytic - and -derived transcripts, lytic growth of bacteriophage λ is not affected in rich media. The level of the late lytic, -derived transcripts also remains unaffected by the mutation under these conditions. However, it was found that whilst there is no significant difference in the phage burst size in and hosts growing in rich media, phage λ is not able to produce progeny in the mutant growing in minimal medium, in contrast to otherwise isogenic bacteria. Provision of an excess of the phage replication proteins O and P or overproduction of the antitermination protein N restore the ability of phage λ to produce progeny in the mutant under the latter conditions. These results suggest that in rich media phage λ produces some early proteins in excess of that needed for its effective propagation and indicate that replication proteins may be limiting factors for phage lytic growth in poor media.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-8-2217
1998-08-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/8/mic-144-8-2217.html?itemId=/content/journal/micro/10.1099/00221287-144-8-2217&mimeType=html&fmt=ahah

References

  1. Echols H. 1971; Regulation of lytic development.. In The Bacteriophage Lambda pp. 247–270 Edited by Hershey A. D. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  2. Echols H. 1986; Bacteriophage λ development: temporal switches and the choice of lysis or lysogeny.. Trends Genet 2:26–30
    [Google Scholar]
  3. Friedman D.I., Court D.L. 1995; Transcription antitermination : the λ paradigm updated.. Mol Microbiol 18:191–200
    [Google Scholar]
  4. Goldberg A.R., Howe M. 1969; New mutations in the S cistron of bacteriophage lambda affecting host cell lysis.. Virology 38:200–202
    [Google Scholar]
  5. Gottesman S., Gottesman M., Shaw J.E., Pearson M.L. 1981; Protein degradation in E. coli: the Ion mutation and bacteriophage lambda N and ell protein stability.. Cell 24:225–233
    [Google Scholar]
  6. Hadas H., Einav M., Fishov I., Zaritsky A. 1997; Bacteriophage T4 development depends on the physiology of its host Escherichia coli. . Microbiology 143:179–185
    [Google Scholar]
  7. Herman-Antosiewicz A., Śrutkowska S., Taylor K., Węgrzyn G. 1998; Replication and maintenance of λ plasmids devoid of the Cro repressor autoregulatory loop in Escherichia coli. . Plasmid (in press)
    [Google Scholar]
  8. Herskowitz I. 1985; Master regulatory loci in yeast and lambda.. Cold Spring Harbor Symp Quant Biol 50:565–574
    [Google Scholar]
  9. Herskowitz I., Hagen D. 1980; The lysis-lysogeny decision of phage λ: explicit programming and responsiveness.. Annu Rev Genet 14:399–445
    [Google Scholar]
  10. Ho Y.S., Rosenberg M. 1985; Characterization of a third, CIL dependent, coordinately activated promoter on phage λ involved in lysogenic development.. J Biol Chern 260:11838–11844
    [Google Scholar]
  11. Hoopes B.C., McClure W. 1985; A cll-dependent promoter is located within the Q-gene of bacteriophage λ.. Proc Natl Acad Sci USA 82:3134–3138
    [Google Scholar]
  12. Kur J., Górska I., Taylor K. 1987; Escherichia coli dnaA initiation function is required for replication of plasmids derived from coliphage lambda.. J Mol Biol 198:203–210
    [Google Scholar]
  13. Lipińska B., Podhajska A., Taylor K. 1980; Synthesis and decay of λ DNA replication proteins in minicells.. Biochem Biophys Res Commun 92:120–126
    [Google Scholar]
  14. Obuchowski M., Węgrzyn A., Szalewska-Paiasz A., Thomas M. S., Węgrzyn G. 1997a; An RNA polymerase β subunit mutant impairs N-dependent transcriptional antitermination in Escherichia coli. . Mol Microbiol 23:211–222
    [Google Scholar]
  15. Obuchowski M., Giladi H., Koby S., Szalewska-Paiasz A., Węgrzyn A., Oppenheim A. B., Thomas M. S., Węgrzyn G. 1997b; Impaired lysogenisation of the Escherichia coli rpoA341 mutant by bacteriophage λ is due to the inability of CII to act as a transcriptional activator.. Mol Gen Genet 254:304–311
    [Google Scholar]
  16. Obuchowski M., Shotland Y., Koby S., Giladi H., Gabig M., Węgrzyn G., 8t Oppenheim A. B. 1997c; Stability of CII is a key element in the cold stress response of bacteriophage λ infection.. J Bacterial 179:5987–5991
    [Google Scholar]
  17. Packman S., Sly S. 1968; Constitutive λ DNA replication by λc17, a regulatory mutant related to virulence.. Virology 34:778–785
    [Google Scholar]
  18. Pawtowicz A., Węgrzyn G., Taylor K. 1993; Effect of coliphage λ P gene mutations on the stability of the λ O protein, the initiator of λ DNA replication.. Acta Biochim Pol 40:29–31
    [Google Scholar]
  19. Ptashne M. 1992 A Genetic Switch: Phage λ and Higher Organisms, 2nd edn.. Cambridge, MA: Cell Press/ Blackwell Scientific Publications;
    [Google Scholar]
  20. Rosenberg M., Court D., Shimatake H., Brady C., Wulff D.L. 1978; The relation between function and DNA sequence in an intercistronic regulatory region in phage λ.. Nature 272:414–423
    [Google Scholar]
  21. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Soberon X., Covarrubias L., Bolivar F. 1980; Construction and characterization of new cloning vehicles. IV. Deletion derivatives of pBR322 and pBR325.. Gene 9:287–305
    [Google Scholar]
  23. Sullivan S.L., Gottesman M.E. 1992; Requirement for E. coli NusG protein in factor-dependent transcription termination.. Cell 68:989–994
    [Google Scholar]
  24. Szalewska A., Węgrzyn G., Taylor K. 1994; Neither absence nor excess of λ O initiator-digesting ClpXP protease affects λ plasmid or phage replication in Escherichia coli. . Mol Microbiol 13:469–474
    [Google Scholar]
  25. Szalewska-Paiasz A., Węgrzyn G. 1994; An additional role of transcriptional activation of orik in the regulation of λ plasmid replication in Escherichia coli. . Biochem Biophys Res Commun 205:802–806
    [Google Scholar]
  26. Szalewska-Paiasz A., Węgrzyn A., Herman A., Węgrzyn G. 1994; The mechanism of the stringent control of λ plasmid DNA replication.. EMBO J 13:5779–5785
    [Google Scholar]
  27. Szalewska-Paiasz A., Węgrzyn A., Obuchowski M., Pawlowski R., Bielawski K., Thomas M.S., Węgrzyn G. 1996; Drastically decreased transcription from Cll-activated promoters is responsible for impaired lysogenisation of the Escherichia coli rpoA341 mutant by bacteriophage λ.. FEMS Microbiol Lett 144:21–27
    [Google Scholar]
  28. Szalewska-Palasz A., Węgrzyn A., Blaszczak A., Taylor K., Węgrzyn G. 1998; DnaA-stimulated transcriptional activation of oriX: Escherichia coli RNA polymerase ft subunit as a transcriptional activator contact site.. Proc Natl Acad Sci USA 95:4241–4246
    [Google Scholar]
  29. Taylor K., Węgrzyn G. 1995; Replication of coliphage lambda DNA.. FEMS Microbiol Rev 17:109–119
    [Google Scholar]
  30. Taylor K., Węgrzyn G. 1998; Regulation of bacteriophage λ replication.. In Molecular Microbiology pp. 81–97 Edited by Busby S. J. W., Thomas C. M., Brown N. L. Berlin & Heidelberg: Springer;
    [Google Scholar]
  31. Thomas M.S., Glass R.E. 1991; Escherichia coli rpoA mutation which impairs transcription of positively regulated systems.. Mol Microbiol 5:2719–2725
    [Google Scholar]
  32. Węgrzyn A., Węgrzyn G. 1995; Transcriptional activation of ori/. regulates λ plasmid replication in amino acid-starved Escherichia coli cells.. Biochem Biophys Res Commun 214:978–984
    [Google Scholar]
  33. Węgrzyn A., Węgrzyn G., Taylor K. 1995; Protection of coliphage λO initiator protein from proteolysis in the assembly of the replication complex in vivo. . Virology 207:179–184
    [Google Scholar]
  34. Węgrzyn A., Węgrzyn G., Herman A., Taylor K. 1996; Protein inheritance: λ plasmid replication perpetuated by the heritable replication complex.. Genes Cells 1:953–963
    [Google Scholar]
  35. Węgrzyn G. 1995; Amplification of λ plasmids in Escherichia coli relA mutants.. J Biotechnol 43:139–143
    [Google Scholar]
  36. Węgrzyn G., Taylor K. 1992; Inheritance of the replication complex by one of two daughter copies during λ plasmid replication in Escherichia coli. . J Mol Biol 226:681–688
    [Google Scholar]
  37. Węgrzyn G., Neubauer P., Krueger S., Hecker M., Taylor K. 1991; Stringent control of replication of plasmids derived from coliphage λ.. Mol Gen Genet 225:94–98
    [Google Scholar]
  38. Węgrzyn G., Glass R. E., Thomas M. S. 1992a; Involvement of the Escherichia coli RNA polymerase a subunit in transcriptional activation by bacteriophage lambda CI and CII proteins.. Gene 122:1–7
    [Google Scholar]
  39. Węgrzyn G., Pawlowicz A., Taylor K. 1992b; Stability of coliphage λ DNA replication initiator, the 2O protein.. J Mol Biol 226:675–680
    [Google Scholar]
  40. Węgrzyn G., , Szalewska- Palasz A., Węgrzyn A., Obuchowski M., Taylor K. 1995a; Transcriptional activation of the origin of coliphage λ DNA replication is regulated by the host DnaA initiator function.. Gene 154:47–50
    [Google Scholar]
  41. Węgrzyn G., Węgrzyn A., Konieczny I., Bielawski K., Konopa G., Obuchowski M., Helinski D. R., Taylor K. 1995b; Involvement of the host initiator function dnaA in the replication of coliphage λ.. Genetics 139:1469–1481
    [Google Scholar]
  42. Węgrzyn G., Węgrzyn A., Pankiewicz A., Taylor K. 1996; Allele specificity of the Escherichia coli dnaA gene function in the replication of plasmids derived from phage λ.. Mol Gen Genet 252:580–586
    [Google Scholar]
  43. Wyatt W.M., Inokuchi H. 1974; Stability of lambda O and P replication functions.. Virology 58:313–315
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-8-2217
Loading
/content/journal/micro/10.1099/00221287-144-8-2217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error