1887

Abstract

Growth of on ammonia and glutamine decreases the expression of many nitrogen catabolic genes to low levels. To discriminate between ammonia- and glutamine-driven repression of and , a gln1-37 mutant was used. This mutant is not able to convert ammonia into glutamine. Glutamine-limited continuous cultures were used to completely derepress the expression of and Following an ammonia pulse, the expression of and decreased while the intracellular glutamine concentration remained constant, both in the cytoplasm and in the vacuole. Therefore, it was concluded that ammonia causes gene repression independent of the intracellular glutamine concentration. The expression of was not decreased by an ammonia pulse but solely by a glutamine pulse. Analysis of the mRNA levels of and showed that the response of the two biosynthetic genes, and , to ammonia and glutamine in the wild-type and gln1-37 was not due to changes in general transcription of biosynthetic genes. Ure2p has been shown to be an essential element for nitrogen-regulated gene expression. Deletion of in the gln1-37 background prevented repression of gene expression by ammonia, showing that the ammonia-induced repression is not caused by a general stress response but represents a specific signal for nitrogen catabolite regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-5-1451
1998-05-01
2021-05-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/5/mic-144-5-1451.html?itemId=/content/journal/micro/10.1099/00221287-144-5-1451&mimeType=html&fmt=ahah

References

  1. André, B., Talibi, D., Boudekou, S., Hein, C., Vissers, S. et al. (1995); Two mutually exclusive regulatory systems inhibit UASgata, a cluster of 5,-GAT(A/T)A-3/ upstream from the UGA4 gene of Saccharomyces cerevisiae.. Nucleic Acid Res 23:(4)558–564 [CrossRef]
    [Google Scholar]
  2. Benjamin, P., Wu, K.-L., Mitchell, A. P., Magasanik, B. (1989); Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae.. Molecular & General Genetics 217:(2–3)370–377 [CrossRef]
    [Google Scholar]
  3. Bergmeyer, H. U. (1974) Methods of Enzymatic Analysis Weinheim:: Verlag Chemie;
    [Google Scholar]
  4. Blinder, D., Magasanik, B. (1995); Recognition of nitrogen- responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene.. Journal of Bacteriology 177:(14)4190–4193 [CrossRef]
    [Google Scholar]
  5. Blinder, D., Coschigano, P. W., Magasanik, B. (1996); Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae.. Journal of Bacteriology 178:(15)4734–4736 [CrossRef]
    [Google Scholar]
  6. Coffman, J. A., Cooper, T. G. (1997); Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae.. Journal of Bacteriology 179:(17)5609–5613 [CrossRef]
    [Google Scholar]
  7. Coffman, J. A., Rai, R., Cooper, T. G. (1995); Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae.. ] Bacteriol 177:(23)6910–6918 [CrossRef]
    [Google Scholar]
  8. Coffman, J. A., Rai, R., Cunningham, T., Svetlov, V., Cooper, T. C. (1996); Gatlp, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen catabolic genes in Saccharomyces cerevisiae.. Molecular and Cellular Biology 16:(3)847–858 [CrossRef]
    [Google Scholar]
  9. Cogoni, C., Valenzuela, L., Gonz^lez-Halphen, D., Olivera, H., Macino, G. et al. (1995); Saccharomyces cerevisiae has a single glutamate synthase gene coding for a plantlike high-molecular-weight polypeptide.. Journal of Bacteriology 177:(3)792–798 [CrossRef]
    [Google Scholar]
  10. Cooper, T. G. (1982) Nitrogen metabolism in Saccharomyces cerevisiae. In The Molecular Biology of the Yeast Saccharomyces. Edited by Strathern, J. N., Jones, E. W., Broach, J. R. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory,;39–99
  11. Coschigano, P. W., Magasanik, B. (1991); The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases.. Molecular and Cellular Biology 11:(2)822–832 [CrossRef]
    [Google Scholar]
  12. Courchesne, W. E., Magasanik, B. (1988); Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes.. Journal of Bacteriology 170:(2)708–713 [CrossRef]
    [Google Scholar]
  13. Daugherty, J. R., Rai, R., El Berry, H. M., Cooper, T. G. (1993); Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae.. Journal of Bacteriology 175:(1)64–73 [CrossRef]
    [Google Scholar]
  14. Dever, T. E., Feng, L., Weh R. C., Cigan A. M., Donahue, T. F., Hinnebush, A. G. (1992); Phosphorylation of initiation factor 2« by protein GCN2 mediates gene specific translational control of GCN4 in yeast.. Cell 68:(3)585–596 [CrossRef]
    [Google Scholar]
  15. Dubois, E., Vissers, S., Grenson, M., Wiame, J.-M. (1977); Glutamine and ammonia in nitrogen catabolite repression of Saccharomyces cerevisiae.. Biochem Biophys Res Commun 75:(2)233–239 [CrossRef]
    [Google Scholar]
  16. Hein, C., Springael, J.-Y., Volland, C., Haguenauer-Tsapis, R., André, B. (1995); NPI, an essential yeast gene involved in induced degradation of Gapl and Fur4 permeases, encodes the Rsp5 ubiquitine-protein ligase.. Molecular Microbiology 18:(1)77–87 [CrossRef]
    [Google Scholar]
  17. Hinnebusch, A. G. (1988); Mechanism of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae.. Microbiological Reviews 52:(2)248–273 [CrossRef]
    [Google Scholar]
  18. Hu, Y., Cooper, T. G., Kohlaw, G. B. (1995); The Saccharomyces cerevisiae Leu3 protein activates expression of GDHl, a key gene in nitrogen assimilation.. Molecular and Cellular Biology 15:(1)52–57 [CrossRef]
    [Google Scholar]
  19. Jauniaux, J.-C., Grenson, M. (1990); GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with other bakers yeast amino acid permeases, and nitrogen catabolite repression.. European Journal of Biochemistry 190:(1)39–44 [CrossRef]
    [Google Scholar]
  20. Jauniaux, J.-C., Vandenbol, M., Vissers, S., Broman, K., Grenson, M. (1987); Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains.. European Journal of Biochemistry 164:(3)601–606 [CrossRef]
    [Google Scholar]
  21. Magasanik, B. (1992) Regulation of nitrogen utilization. The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression, Jones, E. W., Pringle, J. R., Broach, J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory,;283–317
    [Google Scholar]
  22. Marini, A.-M., Vissers, S., Urrestarazu, A., Andr6, B. (1994); Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae.. Embo Journal 15:(15)3456–3463 [CrossRef]
    [Google Scholar]
  23. Miller, S. M., Magasanik, B. (1992); Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae.. Molecular and Cellular Biology 11:(12)6229–6247 [CrossRef]
    [Google Scholar]
  24. Minehart, P. L., Magasanik, B. (1991); Sequence and expression of GLN3, a positive regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain.. Molecular and Cellular Biology 11:(12)6216–6228 [CrossRef]
    [Google Scholar]
  25. Minehart, P. L., Magasanik, B. (1992); Sequence of the GLN1 gene of Saccharomyces cerevisiae-. role of the upstream region in regulation of glutamine synthetase expression.. Journal of Bacteriology 174:(6)1828–1836 [CrossRef]
    [Google Scholar]
  26. Mitchell, A. P. (1985); The GLN1 locus of Saccharomyces cerevisiae encodes glutamine synthetase.. Genetics 111:(2)243–258 [CrossRef]
    [Google Scholar]
  27. Mitchell, A. P., Magasanik, B. (1983); Purification and properties of glutamine synthetase from Saccharomyces cerevisiae.. Journal of Biological Chemistry 258:(1)119–124 [CrossRef]
    [Google Scholar]
  28. Mitchell, A. P., Magasanik, B. (1984); Regulation of glutamine- repressible gene products by the GLN3 function in Saccharomyces cerevisiae.. Molecular and Cellular Biology 4:(12)2758–2766 [CrossRef]
    [Google Scholar]
  29. Nagasu, T., Hall, B. D. (1985); Nucleotide sequence of the GDH gene coding the NADP-specific glutamate dehydrogenase of Saccharomyces cerevisiae.. Gene 37:(1–3)247–253 [CrossRef]
    [Google Scholar]
  30. Ohsumi, Y., Kitamoto, K., Anraku, Y. (1988); Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion.. ] Bacteriol 170:(6)2676–2682 [CrossRef]
    [Google Scholar]
  31. van Riel, N. A. W., Giuseppin, M. L. F., ter Schure, E. G., Verrips, C. T. (1998); A structured, minimal parameter model of the central nitrogen metabolism in Saccharomyces cerevisiae: the prediction of the behaviour of mutants.. J Theor Biol (in press).
  32. Roon, R. J., Even, H. L., Larimore, F. (1974); Glutamate synthase: properties of the reduced nicotinamide adenine dinucleotide- dependent enzyme from Saccharomyces cerevisiae.. Journal of Bacteriology 118:(1)89–95 [CrossRef]
    [Google Scholar]
  33. Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. ter Schure E. G., Silljé H. H. W., Raeven, L. J. R. M., Boonstra, J., Verkleij, A. J., Verrips C. T. (1995a); Nitrogen-regulated transcription and enzyme activities in continuous cultures of Saccharomyces cerevisiae.. Microbiology 141:(5)1101–1108 [CrossRef]
    [Google Scholar]
  35. ter Schure, E. G., Sillj6, H. H. W., Verkleij, A. J., Boonstra, J., Verrips, C. T. (1995b); The concentration of ammonia regulates nitrogen metabolism in Saccharomyces cerevisiae.. Journal of Bacteriology 177:(22)6671–6675 [CrossRef]
    [Google Scholar]
  36. Sierkstra, L. N., Verbakel, J. M. A., Verrips, C. T. (1992); Analysis of transcription and translation of glycolytic enzymes in glucose- limited continuous cultures of Saccharomyces cerevisiae.. Journal of General Microbiology 138:(12)2559–2566 [CrossRef]
    [Google Scholar]
  37. Soberdn, M., Gonzalez, A. (1987a); Physiological role of glutaminase activity in Saccharomyces cerevisiae.. Journal of General Microbiology 133:1–8
    [Google Scholar]
  38. Soberdn, M., Gonzalez, A. (1987b); Glutamine degradation through co-amidase pathway in Saccharomyces cerevisiae.. Journal of General Microbiology 133:9–14
    [Google Scholar]
  39. Stanbrough, M., Rowen, D. W., Magasanik, B. (1995); Role of the GATA factors Gln3p and Nillp of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes.. Proc Natl Acad Sci USA 92:(21)9450–9454 [CrossRef]
    [Google Scholar]
  40. Wach, A., Brachat, A., Pohlmann, R., Philippsen, P. (1994); heterologous modules for classical or PCR-based gene disruption in Saccharomyces cerevisiae.Yeast . 101793–1808 New:
  41. Wiame, J.-M., Grenson, M., Arst, H. N. Jr (1985); Nitrogen catabolite repression in yeast and filamentous fungi.. Recent Advances in Microbial Oxygen-binding Proteins 26:1–88
    [Google Scholar]
  42. Wickner, R. B. (1994); [URE3] as an altered URE2 protein: Evidence for a prion analog in Saccharomyces cerevisiae.. Science 264:(5158)566–569 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-5-1451
Loading
/content/journal/micro/10.1099/00221287-144-5-1451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error