1887

Abstract

The gene, which encodes phosphoenolpyruvate carboxylase (PEPC) of an extremely thermophilic bacterium, , was directly sequenced by the thermal asymmetric interlaced (TAIL) PCR method. An ORF for a 937 amino acid polypeptide was found in the gene. The gene had a high G+C content (66.2 mol%) and the third position of the codon exhibited strong preference for G or C usage (85.0 mol%). The calculated molecular mass was 107 848 Da, which was consistent with the molecular mass of the enzyme as determined by SDS-PAGE (100 kDa). The amino acid sequence of PEPC was closely related to that of PEPC from another thermophile, a sp., and from a mesophile. , exhibiting 45.3% or 37.7% identity and 61.5% or 56.5% similarity, respectively. By Southern analysis, the gene was found to be present in a single copy in the genomic DNA of this organism. The cloned gene was expressed in using a pET expression vector system and a thermostable recombinant PEPC was obtained. Comparison of the deduced amino acid sequences of the thermophilic and mesophilic PEPCs revealed distinct or common preferences for specific amino acid composition and substitutions in the two thermophilic enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-5-1423
1998-05-01
2021-04-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/5/mic-144-5-1423.html?itemId=/content/journal/micro/10.1099/00221287-144-5-1423&mimeType=html&fmt=ahah

References

  1. Adams, M. W. W. (1993); Enzymes and proteins from organisms that grow near and above 100 °C.. Annual Review of Microbiology 47:(1)627–658 [CrossRef]
    [Google Scholar]
  2. Adams, M. W. W. (1994); Biochemical diversity among sulfur- dependent, hyperthermophilic microorganisms.. Fems Microbiology Reviews 15:(2–3)261–277 [CrossRef]
    [Google Scholar]
  3. Adams, M. W. W., Perler, F. B., Kelly, R. M. (1995); Extremo- zyme: expanding the limits of biocatalysis.. Bio/Technology 13:662–668
    [Google Scholar]
  4. Argos, P., Rosmann, M. G., Grau, U. M., Zuber, H., Frank, G. et al. (1979); Thermal stability and protein structure.. Biochemistry 18:(25)5698–5703 [CrossRef]
    [Google Scholar]
  5. Arias, L. M., Argos, P. (1989); Engineering protein thermal stability: sequence statistics point to residue substitutions in a- helices.. Journal of Molecular Biology 206:(2)397–406 [CrossRef]
    [Google Scholar]
  6. Bohm, G., Jaenicke, R. (1994); Relevance of sequence statistics for the properties of extremophilic proteins.. Int J Protein Res 43:(1)97–106 [CrossRef]
    [Google Scholar]
  7. Bradford, M. M. (1976); A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Analytical Biochemistry 72:(1–2)248–254 [CrossRef]
    [Google Scholar]
  8. Britton, K. L., Baker, P. J., Borges, K. M. M. (1995); & 7 other authors, Insight into thermal stability from a comparison of the glutamate dehydrogenases from Pyrococcus furiosus and Thermococcus litoralis.. European Journal of Biochemistry 229:(3)688–695 [CrossRef]
    [Google Scholar]
  9. Brock, T. D., Brock, M. L. (1984) Genus Thermus Brock and Freeze 1969, 295AL.. Edited by Krieg, N. R., Holt, J. G. Bergey’s Manual of Systematic Bacteriology. vol. 1 Baltimore:: Williams & Wilkins,;333–337
    [Google Scholar]
  10. Cannio, R., Rossi, M., Bartolucci, S. (1994); A few amino acid substitutions are responsible for the higher thermostability of a novel NAD+-dependent bacillar alcohol dehydrogenase.. European Journal of Biochemistry 222:(2)345–352 [CrossRef]
    [Google Scholar]
  11. Cavagnero, S., Zhou, Z. H., Adams, M. W. W., Chan, S. I. (1995); Response of rubredoxin from Pyrococcus furiosus to environmental changes: implications for the origin of hyperthermostability.. Biochemistry 34:(31)9865–9873 [CrossRef]
    [Google Scholar]
  12. Chan, M. K., Mukund, S., Kletzin, A., Adams, M. W. W., Rees, D. C. (1995); Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase.. Science 267:(5203)1463–1469 [CrossRef]
    [Google Scholar]
  13. Chou, P. Y., Fasman, G. D. (1978); Prediction of the secondary structure of proteins from their amino acid sequences.. Adv Enzymol Relat Areas Mol Biol 47:45–148
    [Google Scholar]
  14. Cowan, D. A. (1995); Protein stability at high temperatures.. Essays in Biochemistry 29:193–207
    [Google Scholar]
  15. Daniel, R. M. (1996); The upper limits of enzyme thermal stability.. Enzyme Microb Technol 19:(1)74–79 [CrossRef]
    [Google Scholar]
  16. Day, M. W., Hsu, B. T., Joshuator, L., Park, J.-B., Zhou, Z. H. et al. (1992); X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus.. Protein Science 1:(11)1494–1507 [CrossRef]
    [Google Scholar]
  17. Doolittle, W. F., Brown, J. R. (1994); Tempo, mode, the progenote, and the universal root.. Proc Natl Acad Sci USA 91:(15)6721–6728 [CrossRef]
    [Google Scholar]
  18. Eikmanns, B. J., Follettie, M. T., Griot, M. U., Sinskey, A. J. (1989); The phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum.. Molecular & General Genetics 218:(2)330–339 [CrossRef]
    [Google Scholar]
  19. Fujita, N., Miwa, T., Ishijima, S., Izui, K., Katsuki, H. (1984); The primary structure of phosphoenolpyruvate carboxylase of Escherichia coli. Nucleotide sequence of the ppc gene and deduced amino acid sequence.. Journal of Biochemistry 95:(4)909–916 [CrossRef]
    [Google Scholar]
  20. Ishijima, S., Katagiri, F., Kodaki, T., Izui, K., Katsuki, H. et al. (1985); Comparison of amino acid sequences between phosphoenolpyruvate carboxylases from Escherichia coli (allosteric) and Anacystis nidulans (nonallosteric): identification of conserved and variable regions.. Biochem Biophys Res Commun 133:(2)436–441 [CrossRef]
    [Google Scholar]
  21. Itaya, M., Kondo, K. (1991); Molecular cloning of a ribonuclease H (RNase HI) gene from an extreme thermophile Thermus thermophilus HB8: a thermostable RNase H can functionally replace the Escherichia coli enzyme in vivo.. Nucleic Acids Research 19:(16)4443–4449 [CrossRef]
    [Google Scholar]
  22. Jaenicke, R. (1996a); Glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima: strategies of protein stabilization.. Fems Microbiology Reviews 18:(2–3)215–224 [CrossRef]
    [Google Scholar]
  23. Jaenicke, R. (1996b); Stability and folding of ultrastable proteins: eye lens crystallins and enzymes from thermophiles.. Faseb Journal 10:(1)84–92 [CrossRef]
    [Google Scholar]
  24. Kotsuka, T., Akamura, S., Tomuro, M., Yamagishi, A., Oshima, T. (1996); Further stabilization of 3-isopropylmalate dehydrogenase of an extreme thermophile, Thermus thermophilus, by a suppressor mutation method.. Journal of Bacteriology 178:(3)723–727 [CrossRef]
    [Google Scholar]
  25. Laemmli, U. K. (1970); Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:(5259)680–685 [CrossRef]
    [Google Scholar]
  26. Lepiniec, L., Vidal, J., Chollet, R., Gadal, P., Cretin, C. (1994); Phosphoenolpyruvate carboxylase: structure, regulation and evolution.. Plant Science 99:(2)111–124 [CrossRef]
    [Google Scholar]
  27. Liu, Y. G., Whittier, R. F. (1995); Thermal asymmetric interlaced PCR: automable amplification and sequencing of insert end fragments from Pl and YAC clones for chromosome walking.. Genomics 25:(3)674–681 [CrossRef]
    [Google Scholar]
  28. Nakamura, T., Yoshioka, I., Takahashi, M., Toh, H., Izui, K. (1995); Cloning and sequence analysis of the gene for phosphoenolpyruvate carboxylase from an extreme thermophile, Thermus sp.. Journal of Biochemistry 118:(2)319–324 [CrossRef]
    [Google Scholar]
  29. Privalov, P. L., Gill, S. J. (1988); Stability of protein structure and hydrophobic interaction.. Virus Structure 39:191–234
    [Google Scholar]
  30. Regan, M. O., Thierbach, G., Bachmann, B., Vileeval, D., Lepage, P. et al. (1989); Cloning and nucleotide sequence of the phosphoenolpyruvate carboxylase-coding gene of Corynebacterium glutamicum ATCC13032.. Gene 77:(2)237–251 [CrossRef]
    [Google Scholar]
  31. Saitou, N., Nei, M. (1987); The neighbor-joining method: a new method for reconstructing phylogenetic trees.. Molecular Biology and Evolution 4:406–425
    [Google Scholar]
  32. Sako, Y., Takai, K., Uchida, A., Ishida, Y., Katayama, Y. (1996a); Rbodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria.. International Journal of Systematic Bacteriology 46:(4)1099–1104 [CrossRef]
    [Google Scholar]
  33. Sako, Y., Takai, K., Uchida, A., Ishida, Y. (1996b); Purification and characterization of phosphoenolpyruvate carboxylase from the hyperthermophilic archaeon Methanothermus sociabilis.. Febs Letters 392:(2)148–152 [CrossRef]
    [Google Scholar]
  34. Sako, Y., Takai, K., Nishizaka, T., Uchida, A., Ishida, Y. (1997); Biochemical relationship of phosphoenolpyruvate carboxylases (PEPCs) from thermophilic archaea.. Fems Microbiology Letters 153:(1)159–165 [CrossRef]
    [Google Scholar]
  35. Sanger, F., Nicklen, S., Coulson, A. R. (1977); DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 74:(12)5463–5467 [CrossRef]
    [Google Scholar]
  36. Schultes, V., Jaenicke R. (1991); Folding intermediates of hyperthermophilic D-glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima are trapped at low temperature.. Febs Letters 290:(1–2)235–238 [CrossRef]
    [Google Scholar]
  37. Takai, K., Sako, Y., Uchida, A., Ishida Y. (1997a); Extremely thermostable phosphoenolpyruvate carboxylase from an extreme thermophile, Rbodothermus obamensis.. Journal of Biochemistry 122:(1)32–40 [CrossRef]
    [Google Scholar]
  38. Takai, K., Sako, Y., Uchida, A. (1997b); Extrinsic thermostabilization factors and thermodenaturation mechanism of phosphoenolpyruvate carboxylase (PEPC) from an extremely thermophilic bacterium Rhodothermus obamensis.. Journal of Fermentation and Bioengineering 84:(4)291–299 [CrossRef]
    [Google Scholar]
  39. Tamakoshi, M., Yamagishi, A., Oshima, T. (1995); Screening of stable proteins in an extreme thermophile, Thermus thermo- philus.. Molecular Microbiology 16:(5)1031–1036 [CrossRef]
    [Google Scholar]
  40. Toh, H., Kawamura, T., Izui, K. (1994); Molecular evolution of phosphoenolpyruvate carboxylase.. Plant Cell and Environment 17:(1)31–43 [CrossRef]
    [Google Scholar]
  41. Utter, M. F., Kolenbrander, H. M. (1972) Formation of oxalo- acetate by CO2 fixation on phosphoenolpyruvate.. Edited by Boyer, P. D. The Enzymes. New York:: Academic Press,;117–168
    [Google Scholar]
  42. Zuber, H. (1988); Temperature adaptation of lactate dehydrogenase: structural, functional and genetic aspects.. Biophysical Chemistry 29:(1–2)171–179 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-5-1423
Loading
/content/journal/micro/10.1099/00221287-144-5-1423
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error