1887

Abstract

Three rapid spectroscopic approaches for whole-organism fingerprinting-pyrolysis mass spectrometry (PyMS), Fourier transform infra-red spectroscopy (FT-IR) and dispersive Raman microscopy - were used to analyse a group of 59 clinical bacterial isolates associated with urinary tract infection. Direct visual analysis of these spectra was not possible, highlighting the need to use methods to reduce the dimensionality of these hyperspectral data. The unsupervised methods of discriminant function and hierarchical cluster analyses were employed to group these organisms based on their spectral fingerprints, but none produced wholly satisfactory groupings which were characteristic for each of the five bacterial types. In contrast, for PyMS and FT-IR, the artificial neural network (ANN) approaches exploiting multi-layer perceptrons or radial basis functions could be trained with representative spectra of the five bacterial groups so that isolates from clinical bacteriuria in an independent unseen test set could be correctly identified. Comparable ANNs trained with Raman spectra correctly identified some 80% of the same test set. PyMS and FT-IR have often been exploited within microbial systematics, but these are believed to be the first published data showing the ability of dispersive Raman microscopy to discriminate clinically significant intact bacterial species. These results demonstrate that modern analytical spectroscopies of high intrinsic dimensionality can provide rapid accurate microbial characterization techniques, but only when combined with appropriate chemometrics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-5-1157
1998-05-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/5/mic-144-5-1157.html?itemId=/content/journal/micro/10.1099/00221287-144-5-1157&mimeType=html&fmt=ahah

References

  1. Abousleman, G. P., Gifford, E., Hunt, B. R. (1994); Enhancement and compression techniques for hyperspectral data.. Optic Eng 33:(8)2562–2571 [View Article]
    [Google Scholar]
  2. Alsberg, B. K., Woodward, A. M., Winson, M. K., Rowland, J., Kell, D. B. (1997); Wavelet denoising of infrared spectra.. Analyst 122:(7)645–652 [View Article]
    [Google Scholar]
  3. Baraga, J. J., Feld, M. S., Rava, R. P. (1992); Rapid near-infrared Raman spectroscopy of human tissue with a spectrograph and CCD detector.. Applied Spectroscopy 46:(2)187–190 [View Article]
    [Google Scholar]
  4. Beale, R., Jackson, T. (1990) Neural Computing: an Introduction Bristol:: Adam Hilger;
    [Google Scholar]
  5. Bishop, C. M. (1995) Neural Networks for Pattern Recognition Oxford:: Clarendon Press;
    [Google Scholar]
  6. Blanco, M., Coello, J.„ Iturriaga, Maspoch, H.S. et al. (1995); Artificial neural networks for multicomponent kinetic determinations.. Anal Cbem 67:4477–4483
    [Google Scholar]
  7. Bouffard, S. P., Katon, J. E., Sommer, A. J., Danielson, N. D. (1994); Development of microchannel thin layer chromatography with infrared microspectroscopic detection.. Analytical Chemistry 66:(13)1937–1940 [View Article]
    [Google Scholar]
  8. Broomhead, D. S., Lowe, D., Casadevall, A. (1988); Multivariable functional interpolation and adaptive networks, Crisis in infectious diseases - time for a new paradigm.. Complex Syst 2:312–355 1996
    [Google Scholar]
  9. Causton, D. R. (1987) A Biologist’s Advanced Mathematics London:: Allen & Unwin;
    [Google Scholar]
  10. Chatfield, C. (1995); Model uncertainty, data mining and statistical inference.. J R Stat Soc Ser A 158:(3)419–466 [View Article]
    [Google Scholar]
  11. Chauvin, Y., Rumelhart, D. E. (1995) Backpropagation: Theory, Architectures, and Applications Hove, UK:: Erlbaum;
    [Google Scholar]
  12. Chun, J., Atalan, E., Ward, A. C., Goodfellow, M. (1993); Artificial neural network analysis of pyrolysis mass spectrometric data in the identification of Streptomyces strains. Fems Microbiology Letters 107321–325
    [Google Scholar]
  13. Colthup, N. B., Daly, L. H., Wiberly, S. E., Cotton, T. M., Kim, J. H. et al. (1990) Introduction to Infrared and Raman Spectroscopy, Application of surface enhanced Raman spectroscopy to biological systems.. In J Raman Spectrosc 22 New York:: Academic Press,;729–742 1991
    [Google Scholar]
  14. Davey, H. M., Kell, D. B. (1996); Flow cytometry and cell sorting of heterogeneous microbial populations - the importance of single cell analyses.. Microbiological Reviews 60:(4)641–696 [View Article]
    [Google Scholar]
  15. Dixon, W. J. (1975) Biomedical Computer Programs Los Angeles:: University of California Press;
    [Google Scholar]
  16. Duda, R. O., Hart, P. E. (1973) Pattern Classification and Scene Analysis New York:: Wiley;
    [Google Scholar]
  17. Everitt, B. S., Ferraro, J. R., Nakamoto, K. (1993) Cluster Analysis, Introductory Raman Spectroscopy London, London:: Edward Arnold,; 1994
    [Google Scholar]
  18. Freeman, R., Goodacre, R., Sisson, P. R., Magee, J. G., Ward, A. C. et al. (1994); Rapid identification of species within the Mycobacterium tuberculosis complex by artificial neural network analysis of pyrolysis mass spectra.. Journal of Medical Microbiology 40:(3)170–173 [View Article]
    [Google Scholar]
  19. Gemperline, P. J., Long, J. R., Gregoriou, V. G. (1991); Nonlinear multivariate calibration using principal components regression and artificial neural networks.. Analytical Chemistry 63:(20)2313–2323 [View Article]
    [Google Scholar]
  20. Goetz, A. F. H., Vane, G., Solomon, J., Rock, B. N. (1985); Imaging spectrometry for earth remote sensing. Science 2281147–1153
    [Google Scholar]
  21. Goodacre, R., Kell, D. B. (1996); Pyrolysis mass spectrometry and its applications in biotechnology.. Curr Opin Biotecbnol 7:(1)20–28 [View Article]
    [Google Scholar]
  22. Goodacre, R., Kell, D. B., Bianchi, G. (1993); Rapid assessment of the adulteration of virgin olive oils by other seed oils using pyrolysis mass spectrometry and artificial neural networks.. J Sci Food Agric 63:(3)297–307 [View Article]
    [Google Scholar]
  23. Goodacre, R., Neal, M. J., Kell, D. B. (1994a); Rapid and quantitative analysis of the pyrolysis mass spectra of complex binary and tertiary mixtures using multivariate calibration and artificial neural networks.. Analytical Chemistry 66:(7)1070–1085 [View Article]
    [Google Scholar]
  24. Goodacre, R., Neal, M. J., Kell, D. B., Greenham, L. W., Noble, W. C. et al. (1994b); Rapid identification using pyrolysis mass spectrometry and artificial neural networks of Propioni- bacterium acnes isolated from dogs, Rapid and quantitative analysis of metabolites in fermentor broths using pyrolysis mass spectrometry with supervised learning: application to the screening of Penicillium chrysogenum fermentations for the overproduction of penicillins.. Journal of Applied Bacteriology 76:(2)124–134 [View Article]
    [Google Scholar]
  25. Goodacre, R., Hiom, S. J., Cheeseman, S. L., Murdoch, D., Weightman, A. J. et al. (1996a); Identification and discrimination of oral asaccharolytic Eubacterium spp. using pyrolysis mass spectrometry and artificial neural networks.. Current Microbiology 32:(2)77–84 [View Article]
    [Google Scholar]
  26. Goodacre, R., Neal, M. J., Kell, D. B. (1996b); Quantitative analysis of multivariate data using artificial neural networks: a tutorial review and applications to the deconvolution of pyrolysis mass spectra.. Zentralbl Bakteriol - Int J Med Microbiol Virol Parasitol Infect Dis 284:516–539
    [Google Scholar]
  27. Goodacre, R., Timmins, E. M., Rooney, P. J., Rowland, J. J., Kell, D. B. (1996c); Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks.. Fems Microbiology Letters 140:(2–3)233–239 [View Article]
    [Google Scholar]
  28. Goodacre, R., Hammond, D., Kell, D. B. (1997); Quantitative analysis of the adulteration of orange juice with sucrose using pyrolysis mass spectrometry and chemometrics.. J Anal Appl Pyrolysis 40:(41)135–158 [View Article]
    [Google Scholar]
  29. Goodacre, R., Rooney, P. J., Kell, D. B. (1998); Discrimination between methicillin-resistant and methicillin-susceptible Staphylococcus aureus using pyrolysis mass spectrometry and artificial neural networks.. J Antimicrob Chemother 41:(1)23–34 [View Article]
    [Google Scholar]
  30. Gower, J. C. (1966); Some distance properties of latent root and vector methods used in multivariate analysis.. Biometrika 53:(3–4)325–338 [View Article]
    [Google Scholar]
  31. Graselli, J. G., Bulkin, B. J. (1991) Analytical Raman Spectroscopy New York:: Wiley;
    [Google Scholar]
  32. Griffiths, P. R., de Haseth, J. A. (1986) Fourier Transform Infrared Spectrometry New York:: Wiley;
    [Google Scholar]
  33. Gruneberg, R. N. (1994); Changes in urinary pathogens and their antibiotic sensitivities 1971-1992.. J Antimicrob Chemother 33, Suppl A:(suppl A)1–8 [View Article]
    [Google Scholar]
  34. Gutteridge, C. S. (1987); Characterization of microorganisms by pyrolysis mass spectrometry.. Methods Microbiol 19:227–272
    [Google Scholar]
  35. Haykin, S. S. (1994) Neural Networks: a Comprehensive Foundation New York:: Macmillan;
    [Google Scholar]
  36. Helm, D., Labischinski, H., Schallehn G, Naumann, D. (1991); Classification and identification of bacteria by Fourier transform infrared spectroscopy. Journal of General Microbiology 13769–79
    [Google Scholar]
  37. Hush, D. R., Horne, B. G. (1993); Progress in supervised neural networks - what’s new since Lippmann.. IEEE Signal Processing Mag 10:(1)8–39 [View Article]
    [Google Scholar]
  38. Jolliffe, I. T. (1986) Principal Component Analysis New York:: Springer;
    [Google Scholar]
  39. Kell, D. B., Sonnleitner, B. (1995); GMP-Good Modelling Practice: an essential component of good manufacturing practice.. Trends Biotecbnol 13:(11)481–492 [View Article]
    [Google Scholar]
  40. Lewis, D. A. (1989) Bacteriology of urine. Edited by Hawkey, P. M., Lewis, D. A. Medical Bacteriology: a Practical Approach Oxford:: IRL Press,;1–19
    [Google Scholar]
  41. MacFie, H. J. H., Gutteridge, C. S., Norris, J. R. (1978); Use of canonical variates in differentiation of bacteria by pyrolysis gas-liquid chromatography.. Journal of General Microbiology 104:(1)67–74 [View Article]
    [Google Scholar]
  42. Magee, J. T. (1993) Whole-organism fingerprinting. Edited by Goodfellow, M., O’Donnell, A. G. Handbook of New Bacterial Systematics London:: Academic Press,;383–427
    [Google Scholar]
  43. Manly, B. F. J. (1994) Multivariate Statistical Methods: a Primer London:: Chapman & Hall;
    [Google Scholar]
  44. Meuzelaar, H. L. C., Haverkamp, J., Hileman, F. D. (1982); Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials. Amsterdam: Elsevier;
  45. Moody, J., Darken, C. J., Morgan, M. G., McKenzie, H. (1989); Fast learning in networks of locally-tuned processing units, Controversies in the laboratory diagnosis of community acquired urinary tract infection.. Neural Computation 1:(2)281–294 [View Article]
    [Google Scholar]
  46. Nabiev, I., Manfait, M. (1993); Industrial applications of the surface enhanced Raman spectroscopy.. Rev Inst Franfais Petrole 48:261–285
    [Google Scholar]
  47. Nabiev, I., Chourpa, I., Manfait, M. (1994); Applications of Raman and surface enhanced Raman scattering spectroscopy in medicine.. Journal of Raman Spectroscopy 25:(1)13–23 [View Article]
    [Google Scholar]
  48. Naumann, D., Helm, D., Labischinski, H. (1991a); Microbiological characterizations by FT-IR spectroscopy.. Nature 351:(6321)81–82 [View Article]
    [Google Scholar]
  49. Naumann, D., Helm, D., Labischinski, H., Giesbrecht, P. (1991b) Edited by Nelson, W. H. The characterization of microorganisms by Fourier-transform infrared spectroscopy (FT-IR). Modern Techniques for Rapid Microbiological Analysis New York:: VCH,;43–96
    [Google Scholar]
  50. Neal, M. J., Goodacre R, Kell, D. B. (1994); On the analysis of pyrolysis mass spectra using artificial neural networks. Individual input scaling leads to rapid learning.. Proceedings of the World Congress on Neural Networks. San Diego:: International Neural Network Society,;1318–1323
    [Google Scholar]
  51. Nelson, W. H., Sperry, J. F. (1991) UV resonance Raman spectroscopic detection and identification of bacteria and other microorganisms. Edited by Nelson, W. H. Modern Techniques for Rapid Microbiological Analysis New York:: VCH,;97–143
    [Google Scholar]
  52. Nelson, W. H., Manoharan, R., Sperry, J. F. (1992); UV resonance Raman studies of bacteria.. Applied Spectroscopy Reviews 27:(1)67–124 [View Article]
    [Google Scholar]
  53. Pappas, P. G., Park, J., Sandberg, I. W. (1991); Laboratory in the diagnosis and management of urinary tract infections, Universal approximation using radial basis function networks.. Med Clin North Am 75:(2)313–325 [View Article]
    [Google Scholar]
  54. Pitt, T. L. (1990) Pseudomonas. In Topley and Wilson’s Principles of Bacteriology, Raman microspectroscopy of single whole cells. Edited by Parker, M. T., London, L. Collier, Edward Arnold. Puppels, G. J., Greve, J. Virology and Immunity vol. 2255–274 1993
    [Google Scholar]
  55. Puppels, G. J., Schut, T. C. B., Sijtsema, N. M., Grand, M., Maraboeuf, F. et al. (1995); Development and application of Raman microspectroscopic and Raman imaging techniques for cell biological studies. ] Mol Struct 347477–483
    [Google Scholar]
  56. Richard, M. D., Lippmann, R. P. (1991); Neural network classifiers estimate Bayesian a posteriori probabilities.. Neural Computation 3:(4)461–483 [View Article]
    [Google Scholar]
  57. Rumelhart, D. E., McClelland, J. L. & the PDP Research Group (1986) Parallel Distributed Processing, Experiments in the Microstructure of Cognition Cambridge, MA:: MIT Press;
    [Google Scholar]
  58. Saha, A., Keller, J. D. (1990) Algorithms for better representation and faster learning in radial basis functions. Edited by Touretzky, D. Advances in Neural Information Processing Sytems San Mateo, CA:: Morgan Kaufmann Publishers,;482–489
    [Google Scholar]
  59. Savitzky, A., Golay, M. J. E. (1964); Smoothing and differentiation of data by simplified least squares procedures.. Analytical Chemistry 36:(8)1627–1633 [View Article]
    [Google Scholar]
  60. Schrader, B. (1995) Infrared and Raman Spectroscopy: Methods and Applications Weinheim:: Verlag Chemie;
    [Google Scholar]
  61. Seasholtz, M. B., Kowalski, B. (1993) The parsimony principle applied to multivariate calibration. . In Anal Chim Acta277,165–177
    [Google Scholar]
  62. Sisson, P. R., Freeman, R., Law, D., Ward, A. C., Lightfoot, N. F. (1995); Rapid detection of verocytotoxin production status in Escherichia coli by artificial neural network analysis of pyrolysis mass spectra.. J Anal Appl Pyrolysis 32:179–185 [View Article]
    [Google Scholar]
  63. Slack, R. C. B. (1995) Urinary infections. Edited by Greenwood, D. Antimicrobial Chemotherapy Oxford:: Oxford University Press,;243–250
    [Google Scholar]
  64. Timmins, £. M., Goodacre, R. (1997); Rapid quantitative analysis of binary mixtures of Escherichia coli strains using pyrolysis mass spectrometry with multivariate calibration and artificial neural networks.. } Appl Microbiol 83:(2)208–218 [View Article]
    [Google Scholar]
  65. Timmins, E. M., Howell, S. A., Alsberg, B. K., Noble, W. C., Goodacre, R. (1998); Rapid differentiation of closely related Candida species and strains by pyrolysis mass spectrometry and fourier transform infrared spectroscopy.. Journal of Clinical Microbiology 36:(2)367–374 [View Article]
    [Google Scholar]
  66. Walczak, B., Massart, D. L. (1996); The radial basis functions - partial least squares approach as a flexible non-linear regression technique.. Analytica Chimica Acta 331:(3)177–185 [View Article]
    [Google Scholar]
  67. Wasserman, P. D. (1989) Neural Computing: Theory and Practice New York:: Van Nostrand Reinhold;
    [Google Scholar]
  68. Werbos, P. J. (1994) The Roots of Back-Propagation: from Ordered Derivatives to Neural Networks and Political Forecasting Chichester:: Wiley;
    [Google Scholar]
  69. Wilkie, M. E.„ Almond, M., K., Marsh, F. P. (1992); Diagnosis and management of urinary tract infection in adults.. Br Med J 303:(6862)1137–1141 [View Article]
    [Google Scholar]
  70. Wilkins, M. F., Morris, C. W., Boddy, L. (1994); A comparison of radial basis function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry data.. Computer Applications in The Biosciences 10:285–294
    [Google Scholar]
  71. Williams, K. P. J., Pitt, G. D., Batchelder, D. N., Kip B. J. (1994a); Confocal Raman micro-spectroscopy using a stigmatic spectrograph and CCD detector.. Applied Spectroscopy 48:(2)232–235 [View Article]
    [Google Scholar]
  72. Williams, K. P. J., Pitt, G. D., Smith, B. J. E., Whitley, A., Batchelder, D. N. et al. (1994b); Use of a rapid scanning stigmatic Raman imaging spectrograph in the industrial environment.. / Raman Spectrosc 25:(1)131–138 [View Article]
    [Google Scholar]
  73. Wilson, T. A., Rogers, S. K., Myers, L. R. (1995); Perceptual-based hyperspectral image fusion using multiresolution analysis.. Optic Eng 34:(11)3154–3164 [View Article]
    [Google Scholar]
  74. Windig, W., Haverkamp, J., Kistemaker, P. G. (1983); Interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation.. Analytical Chemistry 55:(1)81–88 [View Article]
    [Google Scholar]
  75. Winson, M. K., Goodacre, R., Woodward, A. M.„ Timmins, E., M., Jones, A. et al. (1997); Diffuse reflectance absorbance spectroscopy taking in chemometrics (DRASTIC). A hyperspectral FT-IR-based approach to rapid screening for metabolite overproduction. Analytica Chimica Acta 348273–282
    [Google Scholar]
  76. Wold, H. (1966) Estimation of principal components and related models by iterative least squares. Edited by Krishnaiah R.K. Multivariate Analysis New York:: Academic Press,;391—420
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-5-1157
Loading
/content/journal/micro/10.1099/00221287-144-5-1157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error