Three rapid spectroscopic approaches for whole-organism fingerprinting-pyrolysis mass spectrometry (PyMS), Fourier transform infra-red spectroscopy (FT-IR) and dispersive Raman microscopy - were used to analyse a group of 59 clinical bacterial isolates associated with urinary tract infection. Direct visual analysis of these spectra was not possible, highlighting the need to use methods to reduce the dimensionality of these hyperspectral data. The unsupervised methods of discriminant function and hierarchical cluster analyses were employed to group these organisms based on their spectral fingerprints, but none produced wholly satisfactory groupings which were characteristic for each of the five bacterial types. In contrast, for PyMS and FT-IR, the artificial neural network (ANN) approaches exploiting multi-layer perceptrons or radial basis functions could be trained with representative spectra of the five bacterial groups so that isolates from clinical bacteriuria in an independent unseen test set could be correctly identified. Comparable ANNs trained with Raman spectra correctly identified some 80% of the same test set. PyMS and FT-IR have often been exploited within microbial systematics, but these are believed to be the first published data showing the ability of dispersive Raman microscopy to discriminate clinically significant intact bacterial species. These results demonstrate that modern analytical spectroscopies of high intrinsic dimensionality can provide rapid accurate microbial characterization techniques, but only when combined with appropriate chemometrics.


Article metrics loading...

Loading full text...

Full text loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error