1887

Abstract

The strain 168 chromosomal region extending from 109† to 112° has been sequenced. Among the 35 ORFs identified, and were the only genes that had been previously mapped and sequenced. Out of ten ORFs belonging to a single putative transcription unit, seven are probably involved in hexuronate catabolism. Their sequences are homologous to genes and , which are all required for the uptake of free -glucuronate, -galacturonate and β-glucuronide, and their transformation into glyceraldehyde 3-phosphate and pyruvate via 2-keto-3-deoxygluconate. The remaining three ORFs encode two dehydrogenases and a transcriptional regulator. The operon is preceded by a putative catabolite-responsive element (CRE), located between a hypothetical promoter and the RBS of the first gene. This element, the longest and the only so far described that is fully symmetrical, consists of a 26 bp palindrome matching the theoretical CRE sequence. The remaining predicted amino acid sequences that share homologies with other proteins comprise: a cytochrome P-450, a glycosyltransferase, an ATP-binding cassette transporter, a protein similar to the formate dehydrogenase α-subunit (FdhA), a protein similar to NADH dehydrogenases, and three homologues of polypeptides that have undefined functions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-4-877
1998-04-01
2021-05-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/4/mic-144-4-877.html?itemId=/content/journal/micro/10.1099/00221287-144-4-877&mimeType=html&fmt=ahah

References

  1. Ahn K.S., Wake R.G. (1991); Variations and coding features of the sequence spanning the replication terminus of Bacillus subtilis 168 and W23 chromosomes.. Gene 98:107–112 [CrossRef]
    [Google Scholar]
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. (1990); Basic local alignment search tool.. Journal of Molecular Biology 215,403^410:403–410 [CrossRef]
    [Google Scholar]
  3. Anagnostopoulos C., Piggot P.J., Hoch J.A. 1993 The genetic map of Bacillus subtilis.. In: Sonenshein A.L., Hoch J.A., Losick R. eds. Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics Washington, DC:: American Society for Microbiology;425^–61
    [Google Scholar]
  4. Aronson A.I., Song H.Y., Bourne N. (1989); Gene structure and precursor processing of a novel Bacillus subtilis spore coat protein.. Molecular Microbiology 3:437–444 [CrossRef]
    [Google Scholar]
  5. Ashwell G., Wahba J A, Hickman J. (1960); Uronic acid metabolism in bacteria.. Journal of Biological Chemistry 235:1559–1565 [CrossRef]
    [Google Scholar]
  6. Borodovsky M., Mclninch J.D. (1993); genemark: parallel gene recognition for both DNA strands.. Computers & Chemistry 17:123–133 [CrossRef]
    [Google Scholar]
  7. Bult C.J., White O., Olsen G.J. (1996); 8c 20 other authors.
  8. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii Science 273:1058–1073
    [Google Scholar]
  9. Burland V., Plunkett G., Ill Daniels, D. L., Blattner F.R. (1993)
  10. DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication Genomics 16:551–561
    [Google Scholar]
  11. Burland V., Plunkett G., Ill Sofia, H. J., Daniels D.L., Blattner F.R. (1995); Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92-8 through 100 minutes.. Nucleic Acids Research 23:2105–2119 [CrossRef]
    [Google Scholar]
  12. Chambers S P, Prior S E, Barstow D A, Minton N. P. (1988); The pMTL nic-cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68139–149
    [Google Scholar]
  13. Devereux J., Haeberli P, Smithies O. (1984); A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Research 12:387–395 [CrossRef]
    [Google Scholar]
  14. Durand M., Pichinoty F., Job C., Mandel M. (1979); Nutrition carbonee et etude taxonomique de Bacillus subtilis et B. licheniformis.. Can ] Microbiol 25:491–498 [CrossRef]
    [Google Scholar]
  15. Freier S M, Kierzek R., Jaeger J A, Sugimoto N., Caruthers M H, Neilson T, Turner D. H. (1986); Improved free-energy parameters for predictions of RNA duplex stability.. Proc Natl Acad Sci USA 83:9373–9377 [CrossRef]
    [Google Scholar]
  16. Fujita Y., Miwa Y., Galinier A, Deutscher J. (1995); Specific recognition of the Bacillus subtilis gnt cis-acting catabolite- responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr.. Molecular Microbiology 17:953–960 [CrossRef]
    [Google Scholar]
  17. Glaser P., Kunst F., Arnaud M. (1993); & 14 other authors.
  18. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333° Molecular Microbiology 10:371–384
    [Google Scholar]
  19. Hedegaard L., Danchin A. (1985); The cya gene region of Erwinia chrysanthemi B374: organisation and gene products.. Molecular & General Genetics 201:38–42 [CrossRef]
    [Google Scholar]
  20. Henkin T.M., Grundy F.J., Nicholson W.L., Chambliss G.H. (1991); Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors.. Molecular Microbiology 5:575–584 [CrossRef]
    [Google Scholar]
  21. Honka E., Fabry S., Niermann T., Palm P., Hensel R. (1990)
  22. Properties and primary structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methano- thermus fervidus European Journal of Biochemistry 188:623–632
    [Google Scholar]
  23. Hueck C.J., Hillen W. (1995); Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria?. Molecular Microbiology 15:395–4–01 [CrossRef]
    [Google Scholar]
  24. Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. (1987)
  25. Hexuronate catabolism in Erwinia chrysanthemi Journal of Bacteriology 169:1223–1231
    [Google Scholar]
  26. Jenkins GScCundliffe. , E (1991); Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics.. Gene 108:55–62 [CrossRef]
    [Google Scholar]
  27. Klasen R., Bringer-Meyer 5., Sahm H. (1995); Biochemical characterization and sequence analysis of the gluconate: NADP 5- oxidoreductase gene from Gluconobacter oxydans.. Journal of Bacteriology 111:2637–2643 [CrossRef]
    [Google Scholar]
  28. Laoide B.M., Chambliss G.H., McConnell D.J. (1989); Bacillus licheniformis alpha-amylase gene, amyL, is subject to promoter- independent catabolite repression in Bacillus subtilis.. Journal of Bacteriology 171:2435–2442 [CrossRef]
    [Google Scholar]
  29. Lin ECC. 1996 Dissimilatory pathways for sugars, polyols, and carboxylates. In Escherichia coli and Salmonella: Cellular and Molecular Biology.. In: Neidhardt F.C. et al. vol. 1, 2nd edn. edition, Washington, DC:: American Society for Microbiology;307–342
  30. Longchamp P. (1995); Genetique des endolysines associees a Pinduction des prophages defectifs de type PBSX chez Bacillus subtilis. PhD thesis University of Lausanne;
  31. Merson-Davies L.A., Cundliffe E. (1994); Analysis of five tylosin biosynthetic genes from the tyllBA region of the Streptomyces fradiae genome.. Molecular Microbiology 13:349–355 [CrossRef]
    [Google Scholar]
  32. Mueller J.P., Bukusoglu G., Sonenshein A.L. (1992); Transcriptional regulation of Bacillus subtilis glucose starvation- inducible genes: control of gsiA by the ComP-ComA signal transduction system.. Journal of Bacteriology 174:4361–4373 [CrossRef]
    [Google Scholar]
  33. Ng K., Ye R., Wu X.C., Wong S.L. (1992); Sorbitol dehydrogenase from Bacillus subtilis. Purification, characterization, and gene cloning.. Journal of Biological Chemistry 267:24989–24994 [CrossRef]
    [Google Scholar]
  34. Oshima T., Aiba H., Baba T. (1996); & 22 other authors, A 718kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12-7—28-0 min region on the linkage map.. Dna Research 3:137–155 [CrossRef]
    [Google Scholar]
  35. Oultram J D, Peck H., Brehm J K, Thompson D E, Swinfield T J, Minton N. P. (1988); Introduction of genes for leucine biosynthesis from Clostridium pasteurianum into C. aceto- butylicum by cointegrate conjugal transfer.. Molecular & General Genetics 214:177–179 [CrossRef]
    [Google Scholar]
  36. Pujic P., Dervyn R., Sorokin A., Ehrlich S.D. (1997); Analysis of the kdgRKAT operon involved in D-galacturonate metabolism in Bacillus subtilis. .In: 9th International Conference on Bacilli, abstract F99 Lausanne:: IGBM, University of Lausanne;
    [Google Scholar]
  37. Saier M.H. Jr, Chauvaux S., Cook G.M., Deutscher J., Paulsen
  38. Weickert M.J., Chambliss G.H. (1990); Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis.. Proc Natl Acad Sci USA 87:6238–6242 [CrossRef]
    [Google Scholar]
  39. Wu L., Welker N.E. (1991); Cloning and characterization of a glutamine transport operon of Bacillus stearothermopbilus NUB36: effect of temperature on regulation of transcription.. Journal of Bacteriology 173:4877–4888 [CrossRef]
    [Google Scholar]
  40. Yanisch-Perron C., Vieira J., Messing J. (1985); Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors.. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  41. I. T., Reizer J., Ye J.J. (1996); Catabolite repression and inducer control in Gram-positive bacteria.. Microbiology 142:217–230 [CrossRef]
    [Google Scholar]
  42. Sargent M.G. (1973); Synchronous cultures of Bacillus subtilis obtained by filtration with glass fiber filters.. Journal of Bacteriology 116:736–740 [CrossRef]
    [Google Scholar]
  43. Sorokin A., Azevedo V., Zumstein E., Galleron N., Ehrlich S.D., Serror P. (1996); Sequence analysis of the Bacillus subtilis chromosome region between the serA and kdg loci cloned in a yeast artificial chromosome.. Microbiology 142:2005–2016 [CrossRef]
    [Google Scholar]
  44. Stoeber F., Lagarde A., Nemoz G., Novel G., Novel M., Portalier R., Pouyssegur J., Robert-Baudouy J. (1974); Le metabolisme des hexuronides et des hexuronates chez Escherichia coli K12: aspects physiologiques et genetiques de sa regulation.. Biochimie 56:199–213 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-4-877
Loading
/content/journal/micro/10.1099/00221287-144-4-877
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error