1887

Abstract

The green sulphur bacterium (strain CE 2401) was cultured in a benthic gradient chamber to study its growth and photosynthetic activity in experimental gradients of oxygen, sulphide and light. An axenic biofilm was obtained within evenly inoculated artificial sediment after 5 weeks of incubation. The phototrophic biofilm was located 2.2-3.5 mm below the sediment surface, i.e. below the maximal penetration depth of oxygen, thus confirming that growth of was restricted to strictly anoxic sediment layers. The activity was limited by the diffusive flux of sulphide, showing the role of molecular diffusion in growth of this benthic species. Scalar irradiance was attenuated strongly in the biofilm, with distinct attenuation maxima at 750 nm corresponding to bacteriochlorophyll c (Bchl ) absorption and at 800 nm corresponding to bacteriochlorophyll a (Bchl ) absorption. Using radiance attenuation data as a proxy for photopigment contents it was shown that the ratio Bchl /Bchl c changed with depth. This indicates chromatic adaptation to changing light climates in the sediment. Total sulphide oxidation was estimated from the sulphide fluxes from below into the reaction zone. Measurements of sulphide oxidation as a function of scalar irradiance in the reaction zone showed that anoxygenic photosynthesis of the biofilm was saturated at a scalar irradiance (430-830 nm)>2 μmol photons m s.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-4-1051
1998-04-01
2021-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/4/mic-144-4-1051.html?itemId=/content/journal/micro/10.1099/00221287-144-4-1051&mimeType=html&fmt=ahah

References

  1. Berner R. J. (1980) Early Diagenesis: a Theoretical Approach Princeton, NJ:: Princeton University Press;
    [Google Scholar]
  2. Blankenship R. E., Olson J. M., Miller M. (1995) Antenna complexes from green photosynthetic bacteria, Sulfur oxidation by phototrophic bacteria.. Edited by Blankenship R. E., Madigan M. T., Bauer C. E. In Anoxygenic Photosynthetic Bacteria vol. 975 Dordrecht, Brune, D. C:: Kluwer;399–435 1989
    [Google Scholar]
  3. Feiler U., Hauska G. (1995) Green sulfur bacterial reaction centers.. Edited by Blankenship R. E., Madigan M. T., Bauer C. E. In Anoxygenic Photosynthetic Bacteria Dordrecht:: Kluwer;665–685
    [Google Scholar]
  4. Freiberg A. M., Timpmann K. E., Fetisova Z. G. (1988) Excitation energy transfer in living cells of the green bacterium Chlorobium limicola studied by picosecond fluorescence spectroscopy.. Edited by Olson J. M., Ormerod J. G., Amesz J., Stackebrandt E., Triiper H. G. In Green Photosynthetic Bacteria New York:: Plenum;81–90
    [Google Scholar]
  5. Garcia H. E., Gordon L. I. (1992); Oxygen solubility in seawater: better fitting equations.. Limnology and Oceanography, 37:(6),1307–1312 [CrossRef]
    [Google Scholar]
  6. Gorlenko V. M. (1988) Ecological niches of green sulfur and gliding bacteria.. Edited by Olson J. M., Ormerod J. G., Amesz J., Stackebrandt E., Triiper H. G. In Green Photosynthetic Bacteria New York:: Plenum;257–267
    [Google Scholar]
  7. Guyoneaud R. (1996); Etude ecologique, physiologique et systematique des communautes de bacteries phototrophes anoxygeniques en milieu lagunaire mediterraneen et atlantique. PhD thesis. Universite; Bordeaux I, France:
  8. Guyoneaud R., Matheron R., Baulaigue R., Podeur K., Hirschler A. et al. (1996); Anoxygenic phototrophic bacteria in eutrophic coastal lagoons of the French Mediterranean and Atlantic Coasts (Prevost Lagoon, Arcachon Bay, Certes Fishponds).. Hydrobiologia, 329:(1–3),33–43 [CrossRef]
    [Google Scholar]
  9. Imhoff J. F. (1995) Taxonomy and physiology of phototrophic purple and green sulfur bacteria.. Edited by Blankenship R. E., Madigan M. T., Bauer C. E. In Anoxygenic Photosynthetic Bacteria Dordrecht:: Kluwer;1–15
    [Google Scholar]
  10. Jassby A. D., Platt T. (1976); Mathematical formulation of the relationship between photosynthesis and light for phytoplankton.. Limnology and Oceanography, 21:(4),540–547 [CrossRef]
    [Google Scholar]
  11. Jeroschewski P., Steuckart C., Kiihl M. (1996); An amperometric microsensor for the determination of H2S in aquatic environments.. Analytical Chemistry, 68:(24),4351–4357 [CrossRef]
    [Google Scholar]
  12. Kampf C., Pfennig N. (1980); Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum.. Archives of Microbiology, 127:(2),125–135 [CrossRef]
    [Google Scholar]
  13. Kirk J. T. O. (1994) Light and Photosynthesis in Aquatic Ecosystems, 2nd edn.. Cambridge:: Cambridge University Press;
    [Google Scholar]
  14. Kiihl M., Jorgensen B. B. (1992a); Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector.. Limnology and Oceanography, 37:(8),1813–1823 [CrossRef]
    [Google Scholar]
  15. Kiihl M., Jorgensen B. B. (1992b); Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms.. Appl Environ Microbiol, 58:(4),1164–1174 [CrossRef]
    [Google Scholar]
  16. Kiihl M., Jorgensen B. B. (1994); The light field of microbenthic communities: radiance distribution and microscale optics of sandy coastal sediments.. Limnology and Oceanography, 39:(6),1368–1398 [CrossRef]
    [Google Scholar]
  17. KUhl M., Lassen C., Jorgensen B. B. (1994a); Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic microprobes.. Marine Ecology Progress Series, 105:139–148 [CrossRef]
    [Google Scholar]
  18. Kiihl M., Lassen C., Jorgensen B. B. (1994b) Optical properties of microbial mats: light measurements with fiber-optic microprobes.. Edited by Stal L. J., Caumette P. In Microbial Mats: Structure, Development and Environmental Significance (NATO ASI Series vol. G35) Berlin & Heidelberg:: Springer;149—167
    [Google Scholar]
  19. Kiihl M., Steuckart C., Eickert G., Jeroschewski P. (1998); A H2S microsensor for profiling biofilms and sediments: application in an acidic lake sediment. Aquat Microb Ecol (in press).
  20. Lassen C., Ploug H., Jorgensen B. B. (1992); A fibre-optic scalar irradiance microsensor: application for spectral light measurements in sediments.. Fems Microbiology Ecology, 86:(3),247–254 [CrossRef]
    [Google Scholar]
  21. Millero F. J. (1986); The thermodynamics and kinetics of the hydrogen sulfide system in natural waters.. Marine Chemistry, 18:(2–4),121–147 [CrossRef]
    [Google Scholar]
  22. Millero F. J. (1991); The oxidation of H2S in Framvaren Fjord.. Limnology and Oceanography, 36:(5),1007–1014 [CrossRef]
    [Google Scholar]
  23. Millero F. J., Plese T., Fernandez M. (1988); The dissociation of hydrogen sulfide in seawater.. Limnology and Oceanography, 33:(2),269–274 [CrossRef]
    [Google Scholar]
  24. Meyer B., Ward K., Koshalp K., Peter L. (1983); Second dissociation constant of hydrogen sulfide.. Inorganic Chemistry, 22:(16),2345–2346 [CrossRef]
    [Google Scholar]
  25. Nicholson J. A., Stolz J. F., Pierson B. K. (1987); Structure of microbial mat at Great Sippewisset Marsh, Cape Cod.. Massachusetts Fems Microbiology Ecology, 45:(6),343–364 [CrossRef]
    [Google Scholar]
  26. Olson J. M. (1978) Bacteriochlorophyll a-proteins from green bacteria.. Edited by Clayton R. K., Sistrom R. S. In The Photosynthetic Bacteria New York:: Plenum;161–178
    [Google Scholar]
  27. Olson J. M. (1981); Bacteriopheophytin c in reaction center complexes of green photosynthetic bacteria.. Biochimica Et Biophysica Acta, 637:(1),185–188 [CrossRef]
    [Google Scholar]
  28. Overmann J., Pfennig N. (1992); Continuous chemotrophic growth and respiration of Chromatiaceae species at low oxygen concentrations.. Archives of Microbiology, 158:(1),59–67 [CrossRef]
    [Google Scholar]
  29. Overmann J., Cypionka H., Pfennig N. (1992); An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea.. Limnology and Oceanography, 37:(1),150–155 [CrossRef]
    [Google Scholar]
  30. Pfennig N. (1989) Ecology of phototrophic purple and green sulfur bacteria.. Edited by Schlegel H. G., Bowien B. In Autotrophic Bacteria Madison, WI:: Science Tech Publishers;97–116
    [Google Scholar]
  31. Pfennig N., Triiper H. G. (1992) The family Chromatiaceae.. Edited by Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H. In The Prokaryotes, 2nd edn. edition, New York:: Springer;3200–3221
    [Google Scholar]
  32. Pierson B. K., Castenholz R. W. (1978) Photosynthetic apparatus and cell membranes of green bacteria.. Edited by Clayton R. K., Sistrom W. R. The Photosynthetic Bacteria New York:: Plenum;179–197
    [Google Scholar]
  33. Pierson B. K., Oesterle A., Murphy G. L. (1987); Pigments, light penetration and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett salt marsh.. Fems Microbiology Ecology, 45:(6),365–376 [CrossRef]
    [Google Scholar]
  34. Pierson B. K., Sands V. M., Frederick J. L. (1990); Spectral irradiance and distribution of pigments in a highly layered marine microbial mat.. Appl Environ Microbiol, 56:(8),2327–2340 [CrossRef]
    [Google Scholar]
  35. Ploug H., Lassen C., Jorgensen B. B. (1993); Action spectra of microalgal photosynthesis and depth distribution of spectral scalar irradiance in a coastal marine sediment of Limfjorden.. Denmark Fems Microbiology Ecology, 12:(2),69–78 [CrossRef]
    [Google Scholar]
  36. Pringault O., De Wit R., Caumette P. (1996); A Benthic Gradient Chamber for culturing phototrophic sulfur bacteria on reconstituted sediments.. Fems Microbiology Ecology, 20:(4),237–250 [CrossRef]
    [Google Scholar]
  37. Rasmussen H., Jorgensen B. B. (1992); Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion.. Marine Ecology Progress Series, 81:289–303 [CrossRef]
    [Google Scholar]
  38. Revsbech N. P. (1989); An oxygen microsensor with a guard cathode.. Limnology and Oceanography, 34:(2),472–A76 [CrossRef]
    [Google Scholar]
  39. Revsbech N. P., Jørgensen. (1986); Microelectrodes: their use in microbial ecology.. Advances in Microbial Ecology, 9:293–352
    [Google Scholar]
  40. Stal L. J., Van Gemerden H., Krumbein W. E. (1985); Structure and development of a benthic microbial mat.. Fems Microbiology Ecology, 31:(2),111–125 [CrossRef]
    [Google Scholar]
  41. Stumm W., Morgan J. J. (1981) Aquatic Chemistry. . In An Introduction Emphasizing Chemical Equilibria in Natural Waters New York:: Wiley;
    [Google Scholar]
  42. Tokita S., Hirota M., Shimada K., Matsuura K. (1997) Phaeophytinization of bacteriochlorophyll c and energy transfer in cells of Chlorobium tepidum.. Edited by Peschek G. A., Loffelhardt W., Schmetterer G. In Book of Abstracts of the IXth International Symposium on Phototrophic Prokaryotes Vienna,:112 1997
    [Google Scholar]
  43. Triiper H. G., Schlegel H. G. (1964); Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii.. Antonie Leeuwenhoek, 30:(1),225–238 [CrossRef]
    [Google Scholar]
  44. Van Gemerden H. (1980); Survival of Chromatium vinosum at low light intensities.. Archives of Microbiology, 125:(1–2),115–121 [CrossRef]
    [Google Scholar]
  45. Van Gemerden H. (1984); The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur.. Archives of Microbiology, 139:(4),289–294 [CrossRef]
    [Google Scholar]
  46. Van Gemerden H. (1987); Competition between purple sulfur bacteria and green sulfur bacteria: role of sulfide, sulfur and polysulfides.. Acta Academiae Aboensis, 47:13–27
    [Google Scholar]
  47. Van Gemerden H. (1993); Microbial mats: a joint venture.. Marine Geology, 113:(1–2),3–25 [CrossRef]
    [Google Scholar]
  48. Van Gemerden H., Mas J. (1995) Ecology of phototrophic sulfur bacteria.. Edited by Blankenship R. E., Madigan M. T., Bauer C. E. In Anoxygenic Photosynthetic Bacteria Dordrecht:: Kluwer;49–85
    [Google Scholar]
  49. Van Gemerden H., Tughan C. S., De Wit R., Herbert R. A. (1989); Laminated microbial ecosystems on sheltered beaches in Scapa flow, Orkney Islands.. Fems Microbiology Ecology, 62:(2),87–102 [CrossRef]
    [Google Scholar]
  50. Veldhuis M. J. W., Van Gemerden H. (1986); Competition between purple and brown phototrophic bacteria in stratified lakes: sulfide, acetate and light as limiting factors.. Fems Microbiology Ecology, 38:(1),31–38 [CrossRef]
    [Google Scholar]
  51. de Wit R., Van Gemerden H. (1987); Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina.. Fems Microbiology Ecology, 45:117–126
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-4-1051
Loading
/content/journal/micro/10.1099/00221287-144-4-1051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error