The influence of cadmium on stress protein production in K-12 (strain MG1655) was analysed using two-dimensional polyacrylamide gel electrophoresis and the gene-protein database of K-12. Cadmium (273 μM) caused complete but transient inhibition of growth accompanied by the synthesis of cadmium-induced proteins (CDPs). It was found that some CDPs induced during the growth-arrested phase belong to the heat-shock, oxidation stress, SOS and stringent response regulons, while others are general stress inducible proteins (e.g. H-NS, UspA). In addition, trigger factor, adenylate kinase, W-protein, the cold shock protein G041.2, and seven unknown proteins whose synthesis is not known to be controlled by a global regulator, were identified as immediate responders to cadmium exposure. The rate of synthesis of most of the immediate responders to cadmium exposure decreased when the growth of the cells resumed. However, seven CDPs, including those encoded by and , maintained a high production rate during growth in the presence of cadmium. Two of the unidentified proteins were N-terminally sequenced by Edman degradation. The N-terminal amino acid sequence of one of these proteins (designated F023.3) matches the open reading frame o216. This ORF is similar to the N-terminal third of the copper-binding protein amine oxidases (encoded by ) of both and The other N-terminally sequenced protein (designated C044.6) matches perfectly the product of the gene, S-adenosylmethionine synthetase I. In comparison to untreated cells, cadmium-stressed cells were found to recover more rapidly during subsequent stress conditions, such as ethanol, osmotic, heat shock, and nalidixic acid treatment. The role of the CDPs is discussed in view of their physiological assignments in the cell.


Article metrics loading...

Loading full text...

Full text loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error