1887

Abstract

Trehalose is an enigmatic compound that accumulates in and has been implicated in survival under various stress conditions by acting as membrane protectant, as a supplementary compatible solute or as a reserve carbohydrate that may be mobilized during stress. In this study, specific mutants in trehalose metabolism were used to evaluate whether trehalose contributes to survival under severe osmotic stress and generates the compatible solute glycerol under moderate osmotic stress. The survival under severe osmotic stress (0.866 , NaCI or sorbitol) of mutants was compared to that of the wild-type strain when cultivated to either the mid-exponential or the stationary growth phase on glucose, galactose or ethanol. Stationary-phase cells survived better than exponential-phase cells. The death rates of ethanol-grown cells were lower than those of galactose-grown cells, which in turn survived better than glucose-grown cells. There was a strong relationship between intracellular trehalose levels and resistance to osmotic stress. The mutant strains unable to produce trehalose (Δ Δ and Δ hxk2 Δ) were more sensitive to severe osmotic stress (0.866 ) than the isogenic wild-type strain, confirming a role for trehalose in survival. Hyperaccumulation of trehalose found in the Δ and the Δ Δ mutant strains, however, did not improve survival rates compared to the wild-type strain. When wild-type, Δ and Δ Δ cells were exposed to moderate osmotic stress (0.98 and 0.97 , NaCI), which permits growth, glycerol production did not appear to be related to the intracellular trehalose levels although glycerol levels increased more rapidly in Δ cells than in wild-type cells during the initial response to osmotic stress. These data indicate that trehalose does not act as a reserve compound for glycerol synthesis under these conditions. No evidence was found for solutes other than glycerol and trehalose being significant for the survival of or growth by under osmotic stress conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-3-671
1998-03-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/3/mic-144-3-671.html?itemId=/content/journal/micro/10.1099/00221287-144-3-671&mimeType=html&fmt=ahah

References

  1. Albertyn J., Hohmann S., Prior B.A. 1994a; Characterization of the osmotic-stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently.. Curr Genet 25:12–18
    [Google Scholar]
  2. Albertyn J., Hohmann S., Thevelein J.M., Prior B.A. 1994b; GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway.. Mol Cell Biol 14:4135–4144
    [Google Scholar]
  3. Ansell R., Granath K., Hohmann S., Thevelein J.M., Adler L. 1997; The two isozymes for yeast NAD+-dependent glycerol 3- phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation.. EMBO J 16:2179–2187
    [Google Scholar]
  4. Argüelles J.C. 1994; Fleat-shock response in a yeast tpsl mutant deficient in trehalose synthesis.. FEBS Lett 350:266–270
    [Google Scholar]
  5. Attfield P.V. 1987; Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response.. FEBS Lett 225:259–263
    [Google Scholar]
  6. Bell W., Klassen P., Ohnacker M., Boller T., Herweijer M., Schoppink P., van der Zee P., Wiemken A. 1992; Characterization of the 56-kDa subunit of the yeast trehalose-6- phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation.. Eur J Biochem 209:951–959
    [Google Scholar]
  7. Blomberg A., Adler L. 1992; Physiology of osmotolerance in fungi.. Adv Microb Physiol 33:145–212
    [Google Scholar]
  8. Breitmeier E., Haas G., Voelter W. 1979 Atlas of Carbon-13 NMR Data. London: Heyden & Son;
    [Google Scholar]
  9. Brewster J. L., de Valoir T., Dwyer N. D., Winter E., Gustin M. C. 1993; An osmosensing signal transduction pathway in yeast.. Science 259:1760–1763
    [Google Scholar]
  10. Crowe J.H., Crowe L.M., Chapman D. 1984; Preservation of membranes in anhydrobiotic organisms: the role of trehalose.. Science 223:701–703
    [Google Scholar]
  11. D’Amore T., Crumplen R., Stewart G.G. 1991; The involvement of trehalose in yeast stress tolerance.. J lnd Microbiol 7:191–196
    [Google Scholar]
  12. Destruelle M., Holzer H., Klionsky D.J. 1995; Isolation and characterization of a novel yeast gene, ATHI, that is required for vacuolar acid trehalase activity.. Yeast 11:1015–1025
    [Google Scholar]
  13. De Virgilio C., Bürckert N., Bell W., Jenö P., Boller T., Wiemken A. 1993; Disruption of TPS2, the gene encoding the 100 kDa subunit of the trehalose-6-phosphate synthase/phos- phatase complex in Saccharomyces cerevisiae, causes accumu-lation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity.. Eur J Biochem 212:315–323
    [Google Scholar]
  14. De Virgilio C., Hottiger T., Dominguez J., Boller T., Wiemken A. 1994; The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant.. Eur J Biochem 219:179–186
    [Google Scholar]
  15. Elbein A.D. 1974; The metabolism of ɑ,ɑ-trehalose.. Adv Carbohydr Chem Biochem 30:227–256
    [Google Scholar]
  16. Elliott B., Haltiwanger R.S., Futcher B. 1996; Synergy between trehalose and Hsp 104 for thermotolerance in Saccharomyces cerevisiae. . Genetics 144:923–933
    [Google Scholar]
  17. Fujii S., Iwahashi H., Obuchi K., Fujii T., Komatsu Y. 1996; Characterization of a baratolerant mutant of the yeast Saccharomyces cerevisiae: importance of trehalose content and membrane fluidity.. FEMS Microbiol Lett 141:97–101
    [Google Scholar]
  18. Gadd G.M., Chalmers K., Reed R.H. 1987; The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. . FEMS Microbiol Lett 48:249–254
    [Google Scholar]
  19. Gounalaki N., Thireos G. 1994; Yaplp, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response.. EMBO J 13:4036–4041
    [Google Scholar]
  20. Hazell B.W., Nevalainen H., Attfield P.V. 1995; Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively.. FEBS Lett 377:
    [Google Scholar]
  21. Hohmann S., Neves M.J., de Koning W., Alijo R., Ramos J., Thevelien J.M. 1993; The growth and signalling defects of the ggsl (fdpl/bypl) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII.. Curr Genet 23:281–289
    [Google Scholar]
  22. Holmström K.-O., Mäntylä E., Welin B., Mandal A., Palva E.T., Tunnela O.E., Londesborough J. 1996; Drought resistance in tobacco.. Nature 379:683–684
    [Google Scholar]
  23. Hottiger T., Boiler T., Wiemken A. 1987; Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts.. FEBS Lett 220:113–115
    [Google Scholar]
  24. Hottiger T., De Virgilio C., Hall M.N., Boller T., Wiemken A. 1994; The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. . Eur J Biochem 219:187–193
    [Google Scholar]
  25. Iwahashi H., Obachi K., Fujii S., Komatsu Y. 1995; The correlative evidence suggesting that trehalose stabilizes membrane structure in the yeast Saccharomyces cerevisiae. . Cell Mol Biol 41:763–769
    [Google Scholar]
  26. Kim J., Alizadeh P., Harding T., Hefner-Gravink A., Klionsky D.J. 1996; Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing and ethanol shock: potential commercial applications.. Appl Environ Microbiol 62:1563–1569
    [Google Scholar]
  27. Kopp M., Müller H., Holzer H. 1993; Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. . J Biol Chem 268:4766–4774
    [Google Scholar]
  28. Larsson K., Eriksson P., Ansell R., Adler L. 1993; A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) com-plements an osmosensitive mutant of Saccharomyces cerevisiae. . Mol Microbiol 10:1101–1111
    [Google Scholar]
  29. Lewis J.G., Learmonth R.P., Watson K. 1995; Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. . Microbiology 141:687–694
    [Google Scholar]
  30. Lewis J.G., Learmonth R.P., Attfield P.V., Watson K. 1997; Stress co-tolerance and trehalose content in baking strains of Saccharomyces cerevisiae. . J lnd Microbiol Biotechnol 18:30–36
    [Google Scholar]
  31. Lillie S.H., Pringle J.R. 1980; Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limi-tation.. J Bacteriol 143:1384–1394
    [Google Scholar]
  32. Londesborough J., Varimo K. 1984; Characterization of two trehalases in baker̓s yeast.. Biochem J 219:511–518
    [Google Scholar]
  33. Mackenzie K.F., Singh K.K., Grown A.D. 1988; Water stress plating hypersensitivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae. . J Gen Microbiol 134:1661–1666
    [Google Scholar]
  34. Nwaka S., Kopp M., Holzer H. 1995a; Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. . J Biol Chem 270:10193–10198
    [Google Scholar]
  35. Nwaka S., Mechler B., Destruelle M., Holzer H. 1995b; Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. . FEBS Lett 360:286–290
    [Google Scholar]
  36. Nwaka S., Mechler B., Holzer H. 1996; Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose.. FEBS Lett 386:235–238
    [Google Scholar]
  37. Reinders A., Bürchert N., Hohmann S., Thevelein i.M., Boller T., Wiemken A., De Virgilio C. 1997; Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat stress.. Mol Microbiol 24:687–695
    [Google Scholar]
  38. Robinson R.A., Stokes R.H. 1959 Electrolyte Solutions. New York: Academic Press;
    [Google Scholar]
  39. Ruis H., Schüller C. 1995; Stress signaling in yeast.. Bioessays 17:959–965
    [Google Scholar]
  40. Sáez M.J., Lagunas R. 1976; Determination of intermediary metabolites in yeast. Critical examination of the effect of sampling conditions and recommendations for obtaining true levels.. Mol Cell Biochem 13:73–78
    [Google Scholar]
  41. San Miguel P.F., Argüelles J.-C. 1994; Differential changes in the activity of cytosolic and vacuolar trehalases along the growth cycle of Saccharomyces cerevisiae. . Biochim Biophys Acta 1200:155–160
    [Google Scholar]
  42. Thevelein J.M. 1984; Regulation of trehalose mobilization in fungi.. Microbiol Rev 48:42–59
    [Google Scholar]
  43. Thevelein J.M., Hohmann S. 1995; Trehalose synthase: guard to the gate of glycolysis in yeast ?. Trends Biochem Sei 20:3–10
    [Google Scholar]
  44. Van Dijck P., Colavizza D., Smet P., Thevelein J.M. 1995; Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells.. Appl Environ Microbiol 61:109–115
    [Google Scholar]
  45. Van Laere A. 1989; Trehalose, reserve and /or stress metabolite ? . FEMS Microbiol Rev 63:201–210
    [Google Scholar]
  46. Van Zyl G, Prior B.A., Kilian S.G., Brandt E.V. 1993; Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae. . Appl Environ Microbiol 59:1487–1494
    [Google Scholar]
  47. Vuorio O.E., Kalkkinen N., Londesborough J. 1993; Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. . Eur J Biochem 216:849–861
    [Google Scholar]
  48. Wiemken A. 1990; Trehalose in yeast, stress protectant rather than reserve carbohydrate.. Antonie Leeuwenhoek 58:209–217
    [Google Scholar]
  49. Winderickx J., de Winde J.H., Crauwels M., Hino A., Hohmann S., van Dijck P., Thevelein J.M. 1996; Expression regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae. Novel variations of STRE-mediated transcriptional control ? . Mol Gen Genet 262:470–482
    [Google Scholar]
/content/journal/micro/10.1099/00221287-144-3-671
Loading
/content/journal/micro/10.1099/00221287-144-3-671
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error