1887

Abstract

Summary: The sector of the genome of broad-host-range IncP plasmid RK2 from kb coordinate 54·0 to 60·0 confers an active partitioning phenotype, increasing the segregational stability of low-copy-number unstable plasmids. This Par region encodes the central control operon ( and ) and the associated genes and . Each ORF in this region was knocked out in turn and it was shown that only and are needed for the stability phenotype. encodes two polypeptides from alternative translational starts. A deletion of the start of the operon showed that only IncC2, the shorter product is essential for partitioning. Directed mutation or deletion was used to inactivate in turn each of the three KorB-binding sites (Os) which were candidate -acting sequences needed for stability. Only inactivation of O3, which lies between and , resulted in an increased rate of segregational loss. However, the rate of loss was significantly higher than the rate of loss of the test plasmid carrying none of this RK2 Par region. Either inactivation of or deletion of O1 from this O3 mutant resulted in restoration of the loss rate to that expected for the unstable test plasmid alone. Thus KorB can act on O1 to create a complex that either inhibits replication or reduces the effective plasmid copy number, perhaps by promoting pairing between plasmid molecules. This implies that RK2 goes through a cycle of pairing and separation, akin to the mitotic cycle of eukaryotic chromosomes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-12-3369
1998-12-01
2021-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/12/mic-144-12-3369.html?itemId=/content/journal/micro/10.1099/00221287-144-12-3369&mimeType=html&fmt=ahah

References

  1. Austin S. 1988; Plasmid partitioning.. Plasmid 20:1–9
    [Google Scholar]
  2. Balzer D., Ziegelin G., Pansegrau W., Kruft V, Lanka E. 1992; KorB protein of promiscuous plasmid RK2 recognises inverted sequence repetitions in regions essential for conjugative transfer.. Nucleic Acids Res 20:1851–1858
    [Google Scholar]
  3. Bechhofer D.H., Figurski D.H. 1983; Map location and nucleotide sequence of korA, a key regulatory gene of promiscuous plasmid RK2.. Nucleic Acids Res 11:7453–7469
    [Google Scholar]
  4. Conley D.L., Cohen S.N. 1995; Effects of the pSClOl partitioning (par) locus on in vivo DNA supercoiling near the plasmid replication origin.. Nucleic Acids Res 23:701–707
    [Google Scholar]
  5. Davis M.A., Martin K., Austin S. 1991; Biochemical activities of the PI partition proteins.. Plasmid 25:247–248
    [Google Scholar]
  6. Davis M.A., Radnedge L, Hayes F., Austin S.J. 1996; The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells.. Mol Microbiol 21:1029–1036
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  8. Glaser P., Sharpe M., Raether B., Perego M., Ohisen K., Errington J. 1997; Dynamic mitotic-like behaviour of a bacterial protein required for accurate chromosome partitioning.. Genes Dev 11:1160–1168
    [Google Scholar]
  9. Gordon G.S., Sitnikov D., Webb C.D., Teleman A., Straight A., Losick R., Murray A.W., Wright A. 1997; Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms.. Cell 90:1113–1121
    [Google Scholar]
  10. Hiraga S. 1992; Chromosome and plasmid partitioning in E. coli. . Annu Rev Biochem 61:283–306
    [Google Scholar]
  11. Ingmer H., Cohen S.N. 1993; The pSClOl par locus alters protein-DNA interactions in vivo at the plasmid replication origin.. J Bacteriol 175:6046–6048
    [Google Scholar]
  12. Ireton K., Gunther N.W., Grossman A.D. 1994; SpoOJ is required for normal chromosome segregation as well as initiation of sporulation in Bacillus subtilis. . J Bacteriol 176:5320–5329
    [Google Scholar]
  13. Jagura-Burdzy G., Thomas C.M. 1992; kfrA gene of broad host range plasmid RK2 encodes a novel DNA binding protein.. J Mol Biol 225:651–660
    [Google Scholar]
  14. Jagura-Burdzy G., Thomas C.M. 1995; Purification of KorA protein from broad-host-range plasmid RK2: definition of a hierarchy of KorA operators.. J Mol Biol 253:39–50
    [Google Scholar]
  15. Jagura-Burdzy G., Ibbotson J.P., Thomas C.M. 1991; The korF region of broad-host-range plasmid RK2 encodes two polypeptides with transcriptional repressor activity.. J Bacteriol 173:826–833
    [Google Scholar]
  16. Jensen R.B., Lurz R., Gerdes K. 1998; Mechanism of DNA segregation in prokaryotes: replicon pairing by parC of plasmid Rl.. Proc Natl Acad Sci USA 958550–8555
    [Google Scholar]
  17. Kahn M.R., Kolter R., Thomas C., Figurski D., Meyer R., Remault E., Helsinki D.R. 1979; Plasmid cloning vehicles derived from plasmids ColEl, R6K and RK2.. Methods Enzymol 68:268–280
    [Google Scholar]
  18. Kornacki J.A., Balderes P.J., Figurski D.H. 1987; Nucleotide sequence of korB, a replication control gene of broad host range plasmid RK2.. J Mol Biol 198:211–222
    [Google Scholar]
  19. Lane D., Rothenbuehler R., Merrilat A.M., Aitken C. 1987; Analysis of the F plasmid centromere.. Mol Gen Genet 207:406–412
    [Google Scholar]
  20. Lewis P.J., Errington J. 1997; Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the SpoOJ partitioning protein.. Mol Microbiol 25:945–954
    [Google Scholar]
  21. Lin D., Levin P., Grossman A. 1997; Bipolar localization of a chromosome partition protein in Bacillus subtilis. . Proc Natl Acad Sci USA 944721–726
    [Google Scholar]
  22. Ludtke D.N., Eichorn B.G., Austin S.J. 1989; Plasmid partition functions of the P7 prophage.. J Mol Biol 209:393–406
    [Google Scholar]
  23. Lutkenhaus J., Addinall S.G. 1997; Bacterial cell division and the Z ring.. Annu Rev Biochem 66:93–116
    [Google Scholar]
  24. Macartney D.P., Williams D.R., Stafford T., Thomas C.M. 1997; Divergence and conservation of the partitioning and global regulation functions in the central control region of the IncP plasmids RK2 and R751.. Microbiology 143:2167–2177
    [Google Scholar]
  25. Martin K.A., Friedman S.A., Austin S.J. 1987; Partition site of the PI plasmid.. Proc Natl Acad Sci USA 84:8544–8547
    [Google Scholar]
  26. Martin K.A., Davis M.A., Austin S. 1991; Fine-structure analysis of the PI plasmid partition site.. J Bacteriol 137:885–890
    [Google Scholar]
  27. Mohl D.A., Gober J.W. 1997; Cell cycle-dependent polar localisation of chromosome partitioning proteins in Caulobacter crescentus. . Cell 88:675–684
    [Google Scholar]
  28. Mori H., Mori Y., Ichinose C, Niki H., Ogura T., Kato A., Hiraga S. 1989; Purification and characterization of SopA and SopB proteins essential for F plasmid partitioning.. J Biol Ghent 264:15535–15541
    [Google Scholar]
  29. Motallebi-Veshareh M., Rouch D., Thomas C.M. 1990; A family of ATPases involved in active partitioning of diverse bacterial plasmids. . Mol Microbiol 4:1455–1463
    [Google Scholar]
  30. Niki H., Hiraga S. 1997; Subcellular distribution of actively partitioning F plasmid during the cell division cycle in E. coli. . Cell 90:951–957
    [Google Scholar]
  31. Nordstrom K., Austin S. 1989; Mechanisms that contribute to the stable segregation of plasmids.. Annu Rev Genet 23:37–69
    [Google Scholar]
  32. Pansegrau W., Lanka E., Barth P.T. 7 other authors 1994; Complete nucleotide sequence of Birmingham IncPα plasmids: compilation and comparative analysis.. J Mol Biol 239:623–663
    [Google Scholar]
  33. Rothfield L.I. 1994; Bacterial chromosome segregation.. Cell 77:963–966
    [Google Scholar]
  34. Sambrook J., Fritsch E.F., Maniatis T.M. 1989; Molecular Cloning:. a Laboratory Manual, 2. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  35. Sanger F., Nicklen S., Coulson S. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  36. Sharpe M., Errington J. 1996; The Bacillus subtilis soj-spoOJ locus is required for a centromere-like function involved in prespore chromosome partitioning.. Mol Microbiol 21:501–509
    [Google Scholar]
  37. Smith C.A., Thomas C.M. 1983; Deletion mapping of kil and kor functions in the trfA and trbB regions of broad-host range plasmid RK2.. Mol Gen Genet 190:245–254
    [Google Scholar]
  38. Theophilus B.D.M., Thomas C.M. 1987; Nucleotide sequence of the transcriptional repressor gene korB which plays a key role in regulation of the copy number of broad-host-range plasmid RK2.. Nucleic Acids Res 15:7443–7450
    [Google Scholar]
  39. Theophilus B.D.M., Cross M.A., Smith C.A., Thomas C.M. 1985; Regulation of the trfA and trfB promoters of broad-host- range plasmid RK2. Identification of sequences essential for regulation by trfBfkorAfkorD. . Nucleic Acids Res 13:8129–8142. Thomas
    [Google Scholar]
  40. Thomas C.M., Smith C.A. 1986; The trfB region of broad host range RK2: the nucleotide sequence reveals incC and key regulatory gene trfB/korA/korD as overlapping genes.. Nucleic Acids Res 14:4453–4467
    [Google Scholar]
  41. Thomas C.M., Ibbotson J.P., Wang N., Smith C.A., Tipping R., Loader N.M. 1988; Gene regulation on broad host range plasmid RK2: identification of three novel operons whose transcription is repressed by both KorA and KorC.. Nucleic Acids Res 16:5345–5359
    [Google Scholar]
  42. Thomas C.M., Theophilus B.D., Johnston L.J., Jagura-Burdzy G. , Lurz R., Lanka E. 1990; Identification of a 7th operon on plasmid RK2 regulated by the korA gene product.. Gene 89:29–35
    [Google Scholar]
  43. Thomas C.M., Smith C.A., Ibbotson J.P., Johnston L., Wang N.J. 1995; Evolution of the korA-oriV segment of promiscuous IncP plasmids.. Microbiology 141:1201–1210
    [Google Scholar]
  44. Thorsted P.B., Macartney D.P., Akhtar P. 9 other authors 1998; Complete sequence of the lncPβ plasmid R751; implications for the evolution and organisation of the IncP backbone.. J Mol Biol 282:969–990
    [Google Scholar]
  45. Wake R.G., Errington J. 1995; Chromosome partitioning in bacteria.. Annu Rev Genet 29:41–67
    [Google Scholar]
  46. Watanabe E., Inamoto S., Lee M.H., Kim S.U., Ogua T., Mori H. , Yamasaki M., Nagai K. 1989; Purification and characterisation of the sopB gene product which is responsible for stable maintenance of mini-F plasmid.. Mol Gen Genet 218:431–36
    [Google Scholar]
  47. Watanabe E., Wachi M., Yamasaki M., Nagai K. 1992; ATPase activity of SopA, a protein essential for active partitioning of F plasmid.. Mol Gen Genet 234:346–352
    [Google Scholar]
  48. Webb C.D., Teleman A., Gordon S., Straight A., Belmont A., Chi-Hong D., Grossman A.D., Wright A., Losick R. 1997; Bipolar localisation of the replication origins of chromosomes in vegetative and sporulating cells of B. subtilis. . Cell 88:667–674
    [Google Scholar]
  49. Williams D.R., Thomas C.M. 1992; Active partitioning of bacterial plasmids.. J Gen Microbiol 138:1–16
    [Google Scholar]
  50. Williams D. R., Motallebi-Vershareh M., Thomas C. M. 1993; Multifunctional repressor KorB can block transcription by preventing isomerization of RNA polymerase-promoter complexes.. Nucleic Acids Res 21:1141–1148
    [Google Scholar]
  51. Wilson J.E., Sia E.A., Figurski D.H. 1997; The kilE locus of promiscuous IncPα plasmid RK2 is required for stable maintenance in Pseudomonas aeruginosa. . J Bacteriol 179:2339–2347
    [Google Scholar]
  52. Wu L.J., Lewis P.J., Allmansberger R., Hauser P.M., Errington J. 1995; A conjugation-like mechanism for pre-spore chromosome partitioning during sporulation in Bacillus subtilis. . Genes Dev 9:1316–1326
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-12-3369
Loading
/content/journal/micro/10.1099/00221287-144-12-3369
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error