1887

Abstract

Summary: The first known report of the isolation of thermophilic bacteria which produce nitrile-degrading enzymes is presented. One of the strains isolated was studied in detail. Strain Dac521, classified as was capable of growth on acetonitrile, benzonitrile, propionitrile, acetamide, benzamide and propionamide as the sole carbon and nitrogen source in minimal nutrient media. The strain produced separate aliphatic-nitrile (e.g. acetonitrile)- and aromatic-nitrile (e.g. benzonitrile)-degrading activities. Acetonitrile-degrading activity was produced constitutively and enzyme production was not enhanced by the addition of substrate. Under conditions where benzonitrile was the sole carbon and nitrogen source in minimal nutrient media, acetonitrile-degrading enzyme activity was completely inhibited and benzonitrile-degrading activity was induced. Growth on substrates as sole carbon and nitrogen sources, together with the substrate specificity of cell-free extracts, suggested that acetonitrile and benzonitrile degradation may have occurred via nitrile hydratase and nitrilase pathways, respectively. Both the acetonitrile- and benzonitrile-degrading enzyme systems were significantly more thermostable in whole-cell preparations and cell-free extracts compared to their mesophilic counterparts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-7-2313
1997-07-01
2021-05-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/7/mic-143-7-2313.html?itemId=/content/journal/micro/10.1099/00221287-143-7-2313&mimeType=html&fmt=ahah

References

  1. Arnaud A., Gazly P., Jallageas J. C. 1977; Etude de lʼaceto-nitrilase d’une souche de Brevibacterium . Agric Biol Chem 41:2183–2191
    [Google Scholar]
  2. Asano Y., Fujishiro K., Tany Y., Yamada H. 1982; Aliphatic nitrile hydratase from Arthrobacter sp. J-1: purification and characterization. Agric Biol Chem 46:1165–1174
    [Google Scholar]
  3. Atalo K., Gashe B. A. 1993; Protease production by a thermophilic Bacillus species (P-001A) which degrades various kinds of fibrous proteins. Biotechnol Lett 15:1151–1156
    [Google Scholar]
  4. Bandyopadhyay A. K., Nagasawa T., Asano Y., Fujishiro K., Tani Y., Yamada H. 1986; Purification and characterisation of benzonitrilases from Arthrobacter sp. strain J-1. Appl Environ Microbiol 51:302–306
    [Google Scholar]
  5. Bengis-Garber C., Gutman A. 1988; Bacteria in organic synthesis: selective conversion of 1,3 dicyanobenzene into 3-cyanobenzoic acid. Tetrahedron Lett 29:2589–2590
    [Google Scholar]
  6. Bhalla T., Miura A., Wakamoto A. 1992; Asymmetric hydrolysis of α-aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous Pa-34. Appl Microbiol Biotechnol 37:184–190
    [Google Scholar]
  7. Bianchi D., Bosetti A., Cesti P., Franzosi G., Spezia S. 1991; Stereoselective microbial hydrolysis of 2-aryloxypropionitriles. Biotechnol Lett 13:241–244
    [Google Scholar]
  8. Cluness M. D., Turner P. D., Clements E., Brown D. T., OʹReilly C. 1993; Purification and properties of cyanide hydratase from Fusarium lateritium and analysis of the corresponding chy1 gene. J Gen Microbiol 139:1807–1815
    [Google Scholar]
  9. Collins P. A., Knowles C. J. 1983; The utilization of nitriles and amides by Nocardia rhodochrous . J Gen Microbiol 129:711–718
    [Google Scholar]
  10. Collins C. H., Lyne P. M., Grange J. M. (editors) 1995 Identification methods. . In Microbiological Methods , pp. 103–110 Oxford: Butterworth-Heinmann;
    [Google Scholar]
  11. Faber K. (editor) 1992 Biocatalytic applications. . In Biotransformations in Organic Chemistry , pp. 114–115 Berlin: Springer;
    [Google Scholar]
  12. Fawcett J. K., Scott J. E.,. 1960; A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159
    [Google Scholar]
  13. Gilligan T., Yamada H., Nagasawa T. 1993; Production of S- ( + )-2-phenylpropionic acid from (R,S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328. Appl Microbiol Biotechnol 39:720–725
    [Google Scholar]
  14. Harper D. B. 1977; Enzymology of C–N cleavage by Fusarium solani . Biochem J 167:685–692
    [Google Scholar]
  15. Harper D. B. 1985; Characterization of a nitrilase from Nocardia sp. N.C.I.B. 11215, using p-hydroxybenzonitrile as sole carbon source. Int J Biochem 17:677–683
    [Google Scholar]
  16. Hwang J., Chang H. 1989; Biotransformation of acrylonitrile to acrylamide using immobilised whole cells of Brevibacterium CH1 in a recycle fed batch reactor. Biotechnol Bioeng 34:380–386
    [Google Scholar]
  17. Jallageas J., G, Arnaud A., Galzy P. 1980; Bioconversions of nitriles and their applications. Adv Biochem Eng 14:1–32
    [Google Scholar]
  18. Kakeya H., Sakai N., Sugai T., Ohta H. 1991; Microbial hydrolysis as a potent method for the preparation of optically active nitriles, amides and carboxylic acids. Tetrahedron Lett 32:1343–1346
    [Google Scholar]
  19. Kobayashi M., Nagasawa T., Yamada H. 1989; Nitrilase of Rhodococcus rhodochrous J1: purification and characterisation. Eur J Biochem 182:349–356
    [Google Scholar]
  20. Kobayashi M., Komeda H., Yanaka N. 1992; Nitrilase from Rhodococcus rhodochrous J1. J Biol Chem 267:20746–20751
    [Google Scholar]
  21. Kobayashi M., Izui H., Nagasawa T., Yamada H. 1993a; Nitrilase in biosynthesis of plant hormone indole-3-acetic acid from indole-3-acetonitrile: cloning of the Alcaligenes gene and site directed mutagenesis of cysteine residues. Proc Natl Acad Sci USA 90:247–251
    [Google Scholar]
  22. Kobayashi M., Komeda H., Nagasawa T., Yamada H., Shimizu S. 1993b; Occurrence of amidase in the industrial microbe, Rhodococcus rhodochrous J1. Biosci Biotechnol Biochem 57:1949–1950
    [Google Scholar]
  23. Langdahl B. B., Bisp P., Ingvorsen K. 1996; Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment. Microbiology 142:145–154
    [Google Scholar]
  24. Layh N., Stolz A., Forster S., Effenberger F., Knackmuss H. 1992; Enantioselective hydrolysis of O-acetylmandelonitrile to O-acetylmandelic acid by bacterial nitrilases. Arch Microbiol 158:405–411
    [Google Scholar]
  25. Li W., Zhang Y., Yang H. 1992; Formation and purification of nitrile hydratase from Corynebacterium pseudodiphtheriticum ZBB-41. Appl Biochem Biotechnol 36:171–181
    [Google Scholar]
  26. Logan N. A., Berkeley R. C. W. 1984; Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882
    [Google Scholar]
  27. Magasanik B. 1961; Catabolite repression. Cold Spring Harbor Symp Quant Biol 26:249–256
    [Google Scholar]
  28. Mahadevan S., Thimann K. 1964; Nitrilase: substrate specificity and possible mode of action. Arch Biochem Biophys 107:62–68
    [Google Scholar]
  29. Maier-Greiner U. H., Obermaier-Skrobranek B. M. M., Ester-maier L. M. & 9 other authors 1991; Isolation and properties of a nitrile hydratase from the soil fungus Myrothecium verrucaria that is highly specific for the fertiliser cyanamide and cloning of its gene. Proc Natl Acad Sci USA 88:4260–4264
    [Google Scholar]
  30. Morihara K. 1974; Comparative specificity of microbial pro-teinases. Adv Enzymol 41:179–243
    [Google Scholar]
  31. Nagasawa T., Kobayashi M., Yamada H. 1988; Optimum culture conditions for the production of benzonitrilase by Rhodococcus rhodochrous J1. Arch Microbiol 150:89–94
    [Google Scholar]
  32. Nagasawa T., Shimizu S., Yamada H. 1993; The superiority of the third generation catalyst Rhodococcus rhodochrous J1 nitrile hydratase for industrial production of acrylamide. Appl Microbiol Biotechnol 40:189–195
    [Google Scholar]
  33. Nazly N., Knowles C. J., Beardsmore A. J., Naylor W. T., Corcoran E. G. 1983; Detoxification of cyanide by immobilised fungi. J Chem Technol Biotechnol 33B:119–126
    [Google Scholar]
  34. Scholz T., Demharter W., Hensel R., Kandler O. 1987; Bacillus pallidus sp. nov., a new thermophilic species from sewage. Syst Appl Microbiol 9:91–96
    [Google Scholar]
  35. Shimizu T., Taguchi H. 1969; Microbial treatment of industrial wastes containing cyanide. J Ferment Technol 47:639–643
    [Google Scholar]
  36. Stalker D. M., Malyi L. D., McBride K. E. 1988; Purification and properties of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide sequence analysis of the bxn gene. J Biol Chem 263:6310–6314
    [Google Scholar]
  37. Thimann K. V., Mahadevan S. 1964; Nitrilase: occurrence, preparation and general properties of the enzyme. Arch Biochem Biophys 105:133–141
    [Google Scholar]
  38. Toda K. 1981; Induction and repression of enzymes in microbial culture. J Chem Technol Biotechnol 31:775–790
    [Google Scholar]
  39. Tourneix D., Thiery A., Maestracci M., Arnaud A., Galzy P. 1986; Regulation of nitrile hydratase synthesis in a Brevibacterium species. Antonie Leeuwenhoek 52:173–182
    [Google Scholar]
  40. White D., Sharp R. J., Priest F. G. 1993; A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie Leeuwenhoek 64:357–386
    [Google Scholar]
  41. Yoch D. C., Whiting G. J. 1986; Evidence for NH+ 4 switch-off regulation of nitrogenase activity by bacteria in salt marsh sediments and roots of the grass Spartina alterniflora . Appl Environ Microbiol 51:143–149
    [Google Scholar]
  42. Zimmermann F. K., Scheel I. 1977; Mutants of S. cerevisiae resistant to carbon catabolite repression. Mol Gen Genet 154:75–82
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-7-2313
Loading
/content/journal/micro/10.1099/00221287-143-7-2313
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error