1887

Abstract

Summary: Low-level resistance of to toxic hydrophobic agents (HAs), including some antibiotics, is chromosomally mediated via the multiple transferable resistance () efflux system. The gene encoding the 48.3 kDa outer-membrane protein MtrE, which is associated with the mtr phenotype, was identified and is homologous to export-associated outer-membrane proteins, including the OprM (formerly OprK) lipoprotein of Insertional inactivation of the gene in strain FA19 resulted in the loss of the outer-membrane protein, with concomitant hypersusceptibility of the mutant strain to a range of HAs. The properties of this mutant confirmed the role of MtrE in multidrug resistance mediated by an active efflux mechanism. Secondary structure predictions for MtrE indicated a largely hydrophilic protein with a single α-helical transmembrane region. A transposon-like element, similar to that found downstream of the region containing the promoters for and in was identified 63 bp downstream of the gene.

Funding
This study was supported by the:
  • Joint Standing Research Committee, St Mary’s Hospital (C.A.I.) and NIH (Award AI-21150)
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-7-2127
1997-07-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/7/mic-143-7-2127.html?itemId=/content/journal/micro/10.1099/00221287-143-7-2127&mimeType=html&fmt=ahah

References

  1. Abadi F. J. R., Carter P. E., Cash P., Pennington T. H. 1996; Rifampin resistance in Neisseria meningitidis due to alterations in membrane permeability. Antimicrob Agents Chemother 40:646–651
    [Google Scholar]
  2. Brendel V., Bucher P., Nourbakhsh I. R., Blaisdell E., Karlin S. 1992; Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci USA 89:2002–2006
    [Google Scholar]
  3. Burns J. L., Wadsworth C. D., Barry J. J., Goodall C. P. 1996; Nucleotide sequence analysis of a gene from Burkholderia (Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance. Antimicrob Agents Chemother 40:307–313
    [Google Scholar]
  4. Chou P. Y., Fasman G. D. 1978; Empirical prediction of protein conformation. Annu Rev Biochem 47:251–276
    [Google Scholar]
  5. Correia F. F., Inouye S., Inouye M. 1988; A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae . J Biol Chem 263:12194–12198
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  7. Economou A., Hamilton W. D. O., Johnston A. W. B., Downie J. A. 1990; The Rhizobium nodulation gene nodO encodes a Ca2+-binding protein that is exported without N-terminal cleavage and is homologous to haemolysin and related proteins. EMBO J 9:349–354
    [Google Scholar]
  8. Fath M. J., Kolter R. 1993; ABC transporters: bacterial exporters. Microbiol Rev 57:995–1017
    [Google Scholar]
  9. Fralick J. A., Burns-Keliher L. L. 1994; Additive effect of tolC and rfa mutations on the hydrophobic barrier of the outer membrane of Escherichia coli K-12. J Bacterial 176:6404–6406
    [Google Scholar]
  10. Garnier J., Osguthorpe D. J., Robson B. 1978; Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120
    [Google Scholar]
  11. Goodman S. D., Scocca J. J. 1988; Identification and arrangement of the DNA sequence recognised in specific transformation of Neisseria gonorrhoeae . Proc Natl Acad Sci USA 85:6982–6986
    [Google Scholar]
  12. Guymon L. F., Walstad D. L., Sparling P. F. 1978; Cell envelope alterations in antibiotic-sensitive and -resistant strains of Neisseria gonorrhoeae . J Bacteriol 136:391–401
    [Google Scholar]
  13. Hagman K. E., Shafer W. M. 1995; Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae . J Bacteriol 177:4162–4165
    [Google Scholar]
  14. Hagman K. E., Pan W., Spratt B. G., Balthazar J. T., Judd R. C., Shafer W. S. 1995; Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141:611–622
    [Google Scholar]
  15. Hayashi S., Wu H. C. 1990; Lipoproteins in bacteria. J Bioenerg Biomembr 22:451–471
    [Google Scholar]
  16. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  17. Lucas C. E., Hagman K. E., Levin J. G,, Stein D. C., Shafer W. M. 1995; Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Mol Microbiol 16:1001–1009
    [Google Scholar]
  18. Ma D., Cook D. N., Alberti M., Pon N. G., Nikaido H., Hearst J. E. 1993; Molecular cloning and characterisation of acrA and acrE genes of Escherichia coli . J Bacteriol 175:6299–6313
    [Google Scholar]
  19. Ménard R., Sansonetti P. J., Parsot C. 1993; Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 175:5899–5906
    [Google Scholar]
  20. Morona R., Manning P. A., Reeves P. 1983; Identification and characterization of the TolC protein, an outer membrane protein from Escherichia coli . J Bacteriol 153:693–699
    [Google Scholar]
  21. Morse S. A., Lysko P. G., McFarland L., Knapp J. S., Sandstrom E., Critchlow C., Holmes K. K. 1982; Gonococcal strains from homosexual men have outer membranes with reduced permeability to hydrophobic molecules. Infect Immun 37:432–438
    [Google Scholar]
  22. Nikaido H. 1994; Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–387
    [Google Scholar]
  23. Nikaido H., Saier M. H. , Jr 1992; Transport proteins in bacteria: common themes in their design. Science 258:936–942
    [Google Scholar]
  24. Pan W., Spratt B. G. 1994; Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol 11:769–775
    [Google Scholar]
  25. Poole K., Krebes K., McNally C., Neshat S. 1993; Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372
    [Google Scholar]
  26. Rost B., Sander C. 1993; Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232:584–599
    [Google Scholar]
  27. Saier M. H., Tam R., Reizer A., Reizer J. 1994; Two novel families of bacterial membrane proteins concerned with nodu-lation, cell division and transport. Mol Microbiol 11:841–847
    [Google Scholar]
  28. Shafer W. M., Guymon L. F., Lind I., Sparling P. F. 1984; Identification of an envelope mutation (env-10) resulting in increased antibiotic susceptibility and pyocin resistance in a clinical isolate of Neisseria gonorrhoeae . Antimicrob Agents Chemother 25:767–769
    [Google Scholar]
  29. Shafer W. M., Balthazar J. T., Hagman K. E., Morse S. A. 1995; Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology 141:907–911
    [Google Scholar]
  30. Sparling P. F., Sarubbi F. A., Jr 8t Blackman E. 1975; Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae . J Bacteriol 124:740–749
    [Google Scholar]
  31. Stern A., Nickel P., Meyer T. F., So M. 1984; Opacity determinants of Neisseria gonorrhoeae: gene expression and chromosomal linkage to the gonococcal pilus gene. Cell 37:447–456
    [Google Scholar]
  32. Surin B. P., Watson J. M., Hamilton W. D., Economou A., Downie J. A. 1990; Molecular characterisation of the nodu-lation gene, nodT, from two biovars of Rhizobium leguminosarum . Mol Microbiol 4:245–252
    [Google Scholar]
  33. Wang R. C., Seror S. J., Blight M., Pratt J. M., Broome-Smith J. K., Holland I. B. 1991; Analysis of the membrane organization of an Escherichia coli protein translocator, HlyB, a member of a large family of prokaryote and eukaryote surface transport proteins. J Mol Biol 217:441–454
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-7-2127
Loading
/content/journal/micro/10.1099/00221287-143-7-2127
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error