1887

Abstract

The anaerobic free-living ciliated protozoon is a grazer in anoxic marine sediments. It does not possess mitochondria, but it does have specialized organelles termed hydrogenosomes which release hydrogen gas. The cationic lipophilic cyanine dye DiOC(3) is an indicator of transmembrane electrochemical potential. With the aid of confocal laser scanning microscopy (CLSM), the association of this dye with hydrogenosomes was followed. Flow cytometric measurements showed that fluorescence of the membrane potential dye decreased in response to an elevated H in the cell. CLSM also revealed localization of fluorescence of the calcium probe Fluo 3-AM, and of the transmembrane pH gradient probe BCECF-AM, within the lumen of the hydrogenosomes. In addition, hydrogenosomal inclusions were detected. X-ray microanalysis of these electron-dense granules revealed high levels of calcium, phosphate and magnesium. It is concluded that hydrogenosomes are calcium stores, have a membrane potential, and an alkaline lumen. These physiological features resemble those of mitochondria in aerobic protozoa.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1623
1997-05-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1623.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1623&mimeType=html&fmt=ahah

References

  1. Benchimol M., Elias C. A., De Souza W. 1982; Tritrichomonas foetus : ultrastructural localisation of calcium in the plasma membrane and in the hydrogenosome. Exp Parasitol 54:277–284
    [Google Scholar]
  2. Bozner P. 1996; The heat shock response and major heat shock proteins of Tritrichomonas mobifensis and Tritrichomonas augusta. . J Parasitol 82:103–111
    [Google Scholar]
  3. Brondijk T. H. C., Durand R., van der Giezen M., Gottschal J. C., Prins R.A., Fhvre M. 1996; SCSB, a cDNA encoding the hydrogenosomal protein β-succinyl-CoA synthetase from the anaerobic fungus Neocallimastix frontalis. . Mof Gen Genet 253:315–323
    [Google Scholar]
  4. Bui E.T. N., Bradley P. J., Johnson P. J. 1996; A common evolutionary origin for mitochondria and hydrogenosomes. Proc Nut1 Acad Sci USA 93:9651–9656
    [Google Scholar]
  5. Carafoli E. 1987; Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433
    [Google Scholar]
  6. Cavalier-Smith T. 1987; The simultaneous origin of mitochondria, chloroplasts and microbodies. Ann N Y Acad Sci 503:55–72
    [Google Scholar]
  7. Chapman A., Hann A. C., Linstead D., Lloyd D. 1985; Energydispersive X-ray microanalysis of membrane-associated inclusions in the hydrogenosomes isolated from Trichomonas vaginafis. . J Gen Microbiol 115:301–307
    [Google Scholar]
  8. Coombs G. H., Hackstein J. H. P. 1995; Anaerobic protists and anaerobic ecosystems. Edited by G. Brugerolle & J. P. Mignot. Clermont-Ferrand: Blaise Pascalde University. In Protistological Actualities, Proceedings of the Second European Congress of Protistofogy90–101
    [Google Scholar]
  9. Embley T. M., Finlay B. J., Brown S. 1992; RNA sequence analysis shows that the symbionts in the ciliate Metopus contortus are polymorphs of a single methanogen species. FEMS Microbiof Lett 97:57–62
    [Google Scholar]
  10. Embley T. M., Finlay B. J., Dyal P. L., Hirt R. P., Wilkinson M., Williams A. G. 1995; Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc R SOC Lond B 262:87–93
    [Google Scholar]
  11. Fenchel T., Finlay B. J. 1990; Anaerobic free living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiof Ecol 74:269–276
    [Google Scholar]
  12. Fenchel T., Finlay B. J. 1991; Endosymbiotic methanogenic bacteria in anaerobic ciliates : significance for the growth efficiency of the host. J Protozool 38:18–22
    [Google Scholar]
  13. Fenchel T., Finlay B. J. 1992; Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol 157:475–480
    [Google Scholar]
  14. Fenchel T., Finlay B. J. 1994; The evolution of life without oxygen. Am Sci 82:22–29
    [Google Scholar]
  15. Finlay B. J., Fenchel T. 1989; Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65:311–314
    [Google Scholar]
  16. Finlay B. J., Fenchel T. 1991; Polymorphic bacterial symbionts in the anaerobic ciliated protozoon Metopus contortus. . FEMS Microbiol Lett 79:187–190
    [Google Scholar]
  17. Finlay B. J., Fenchel T. 1992; Methanogens and other bacteria as symbionts of free-living anaerobic ciliates. . Symbiosis 14:375–390
    [Google Scholar]
  18. van der Giezen M., Rechinger K. B., Svendsen I., Durand R., Hirt R. P., Fhvre M., Embley T. M., Prins R. A. 1997; A mitochondrial-like targeting signal on the hydrogenosomal malicenzyme from the anaerobic fungus Neocaffimastix frontalis : support for the hypothesis that the hydrogenosomes are modified mitochondria. Mol Microbiol 23:11–21
    [Google Scholar]
  19. Horner D. S., Hirt R. P., Kilvington S., Lloyd D., Embley T. M. 1996; Molecular data suggest an earlier aquisition of the mitochondrion endosymbiont. Proc R SOC Lond B 263:1053–1059
    [Google Scholar]
  20. Humphreys M. J., Ralphs j., Durrant L., Lloyd D. 1994; Hydrogenosomes in trichomonads are calcium stores and have a transmembrane electrochemical potential. Biochem SOC Trans 22:32–40
    [Google Scholar]
  21. Johnson G. D., Davidson R. S., McNamee K. C., Russel G., Goodwin D., Halbarrow E. J. 1982; Fading of immuno fluorescence during microscopy and study of the phenomenon and its remedy. J Zmmunof Methods 55:231–242
    [Google Scholar]
  22. Lloyd D., Lindmark D. G., Müller M. 1979; Adenosine triphosphatase activity of Tritrichomonas foetus. . J Gen Microbiol 115:301–307
    [Google Scholar]
  23. Marvin-Sikkema F. D., Driessen A. J. M., Gottschal J. C., Prins R. A. 1994; Metabolic energy generation in hydrogenosomes of the anaerobic fungus Neocallimastix : evidence for a functional relationship with mitochondria. Mycol Res 98:205–212
    [Google Scholar]
  24. Müller M. 1980; The hydrogenosome. Edited by G. W. Gooday, D. Lloyd & A. P. J. Trinci. Cambridge: Cambridge University Press. In The Eukaryotic Microbial Cell, 30th Symposium of the Society for General Microbiology (University of Cambridge)127–142
    [Google Scholar]
  25. Smith M. R. 1983; Reversal of 2-bromoethanesulfonate inhibition of methanogenesis in Methanosarcina sp. . J Bacteriol l56:516–523
    [Google Scholar]
  26. Turner A. C., Luschbaugh W. B. 1991; Three aspecific ATPases in Trichomonas vaginafis. Comp Biochem Physiol 100B:691–696
    [Google Scholar]
  27. Whatley F. R. 1981; The establishment of mitochondria : Paracoccus and Rhodopseudomonas. . Ann N Y Acad Sci 361:330–340
    [Google Scholar]
  28. Wilhelm E. R., Battino R., Wilcock R. J. 1977; Low pressure solubility of gases in liquid water. Chem Rev 77:219–262
    [Google Scholar]
  29. Yarlett N., Rowlands C., Evans J., Yarlett N. C., Lloyd D. 1987; Nitromidazole and oxygen derived radicals detected by electron spin resonance in hydrogenosomal and cytosolic fractions from Trichomonas vaginafis. . Mol Biochem Parasitol 24:255–261
    [Google Scholar]
  30. Zierdt C. H. 1986; Cytochrome-free mitochondria of an anaerobic protozoan Bfastocystis hominis. . J Protozool 33:67–69
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-5-1623
Loading
/content/journal/micro/10.1099/00221287-143-5-1623
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error