1887

Abstract

U does not degrade D-glucose through the glycolytic pathway but requires (i) its oxidation to -gluconic acid by a peripherally located constitutive glucose dehydrogenase (insensitive to osmotic shock), (ii) accumulation of -gluconic acid in the extracellular medium, and (iii) the induction of a specific energy-dependent transport system responsible for the uptake of -gluconic acid. This uptake system showed maximal rates of transport at 30 ° in 50 mM potassium phosphate buffer, pH 7.0. Under these conditions the Km calculated for -gluconic acid was 6.7 μM. Furthermore, a different transport system, specific for the uptake of glucose, was also identified. It is active and shows maximal uptake rates at 35 ° in 50 mM potassium phosphate buffer, pH 6.0, with a value of 8.3 μM.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1595
1997-05-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1595.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1595&mimeType=html&fmt=ahah

References

  1. Anderson A. J., Dawes E. A. 1990; Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbial Rev 54:450–472.
    [Google Scholar]
  2. Bayly R. C., Wigmore G. J. 1973; Metabolism of phenol and cresols by mutants of Pseudomonas putida. J Bacteriol 113:1112–1120.
    [Google Scholar]
  3. Bendall M. R., Pegg D. I., Doddrell D. M., Pegg D. I., Williams D. H. 1982; Strategy for the generation of 13C subspectra. Application to the analysis of the 13C spectrum of the antibiotic ristocetin. J Org Chem 47:3021–3023.
    [Google Scholar]
  4. Bergmeyer H. U. 1974a; SFructose-6-phosphate kinase from rabbit muscle. In Methods of Enzymatic Analysis, Edited by H. U. Bergmeyer. New York:. Academic Press. 1:451
    [Google Scholar]
  5. Bergmeyer H. U. 1974b; Gluconate kinase. In Methods of Enzymatic Analysis, Edited by H. U. Bergmeyer. New York:. Academic Press. 1:457–458
    [Google Scholar]
  6. Bergmeyer H. U. 1974c; Hexokinase from yeast. In Methods of Enzymatic Analysis, Edited by H. U. Bergmeyer. New York:. Academic Press. 1:473–474
    [Google Scholar]
  7. Bock R., Pedersen C. 1983; Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. Adv Carbohydr Chem Biochem 41:27–28
    [Google Scholar]
  8. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248–254
    [Google Scholar]
  9. Ciucu A., Patroescu C. 1984; Fast spectrometric method of determining the activity of glucose oxidase. Anal Lett 17:1417–1427.
    [Google Scholar]
  10. Collinsworth W. L., Chapman P. J., Dagley S. 1973; Stereospecific enzymes in the degradation of aromatic compounds by Pseudomonas putida. J Bacteriol 133:922–931.
    [Google Scholar]
  11. Conway T. 1992; The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 103:1–28.
    [Google Scholar]
  12. Cyskey S. M., Wolff J. A., Phibbs P. V. Jr, Olsen R. H. 1985; Cloning of genes specifying carbohydrate catabolism in Pseudomonas aeruginosa and in Pseudomonas putida. J Bacteriol 162:865–871.
    [Google Scholar]
  13. Dagley S. 1975; A biochemical approach to some problems of environmental pollution. Essays Biochem 11:81–138.
    [Google Scholar]
  14. Duine J. A., Frank J., Jzn & Jongejan J. A. 1986; PQQ and quinoprotein enzymes in microbial oxidations. FEMS Microbiol Rev 32:165–178.
    [Google Scholar]
  15. Dunn N. W., Gunsalus I. C. 1973; Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol 114:974–979.
    [Google Scholar]
  16. Eisenberg R. C., Butters S. J., Quay S. J., Friedman S. B. 1974; Glucose uptake and phosphorylation in Pseudomonas fluorescens. J Bacteriol 120:147–153.
    [Google Scholar]
  17. Elzainy T. A., Butters S. J., Hassan M. M., Allam A. L. 1973; Occurrence of the non-phosphorylated pathway for gluconate degradation in different fungi. Biochem Syst Ecol 1:127–128.
    [Google Scholar]
  18. Fuchs G., Mohamed M., Altenschmidt U., Kðch J., Lack A., Brackmann R., Lochmeyer C., Oswald B. 1994; Biochemistry of anaerobic degradation of aromatic compounds. In Biochemistry of Microbial Degradation, Edited by C. Ratledge. London:. Kluwer Academic Publisher.513–553.
    [Google Scholar]
  19. Galli E., Barbieri P., Bestetti G. 1992a; Potential of Pseudomonads in the degradation of methylbenzenes. In Pseudomonas: Molecular Biology and Biotechnology, Edited by E. Galli, S. Silver & B. Witholt. Washington, DC:. American Society for Microbiology.268–276.
    [Google Scholar]
  20. Galli E., Silver S., Witholt B., editors . 1992b; Pseudomonas: Molecular Biology and Biotechnology. Washington, DC:. American Society for Microbiology.
    [Google Scholar]
  21. Gibson D. T., Hensley M., Yoshioka H., Marby T. J. 1970; Formation of (+)-cis-2,3-dihydroxy-l-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry 9:1626–1630
    [Google Scholar]
  22. Hardy G. P. M. A., Teixeira de Mattos M. J., Neijssel O. M. 1993; Energy conservation by pyrroloquinoline quinol-linked xylose oxidation in Pseudomonas putida NCTC 10936 during carbon-limited growth in chemostat culture. FEMS Microbial Lett 107:107–110
    [Google Scholar]
  23. Hauge J. G. 1966; Glucose dehydrogenase - particulate. Methods Enzymol 9:92–98
    [Google Scholar]
  24. Jermyn M. A. 1960; Studies on the glucono-δ-lactonase of Ps. fluorescens. Biochim Biophys Acta 37:78–92
    [Google Scholar]
  25. Keston A. S. 1956; Abstract 129. Abstracts ofthe 5th Meeting of the American Chemical Society, Dallas, Texas, . 310–314
    [Google Scholar]
  26. Kheshghi S., Roberts H. R., Bucek W. 1954; Studies on the production of 5-ketogluconic acid by Acetobacter suboxydans. Appl Microbiol 2:183–190
    [Google Scholar]
  27. King J. 1974; Glucosephosphate isomerase. In Methods of Enzymatic Analysis,. Academic Press. 2:1113–1117
    [Google Scholar]
  28. Kobal W. M., Gibson D. T., Garza A. 1973; X-ray determination of the absolute stereochemistry of the initial oxidation product formed from toluene by Pseudomonas putida 39/D. J Am Chem Soc 95:4420–4421
    [Google Scholar]
  29. Lageveen R. G., Huisman G. W., Preusting H., Ketelaar P., Eggink G., Witholt B. 1988; Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932
    [Google Scholar]
  30. Lakshminarayana K., Modi V. V., Shah V. K. 1969; Studies on gluconate metabolism in A. niger. Arch Mikrobiol 66:389–395
    [Google Scholar]
  31. Lessie T. G., Phibbs P. V. Jr 1984; Alternative pathways of carbohydrate utilization in Pseudomonads. Annu Rev Microbiol 38:359–387
    [Google Scholar]
  32. Lindow S. E. 1992; Environmental release of Pseudomonads: potential benefits and risks. In Pseudomonas: Molecular Biology and Biotechnology, Edited by E. Galli, S. Silver & B. Witholt. Washington, DC :. American Society for Microbiology.399–407
    [Google Scholar]
  33. Luengo J. M., Revilla G., Lopez-Nieto M. J., Villanueva J. R., Martín J. F. 1980; Inhibition and repression of homocitrate synthase by lysine in Penicillium chrysogenum. J Bacteriol 144:869–876
    [Google Scholar]
  34. Lunt D., Evans W. C. 1970; The microbial metabolism of biphenyl. Biochem J118–54
    [Google Scholar]
  35. MacGregor C. H., Wolff J. A., Arora S. K., Hylemon P. B., Phibbs P. V. 1992; Catabolite repression control in Pseudomonas aeruginosa. In Pseudomonas: Molecular Biology and Biotechnology, Edited by E. Galli, S. Silver & B. Witholt. Washington, DC :. American Society for Microbiology.198–206
    [Google Scholar]
  36. Martinez-Blanco H., Reglero A., Luengo J. M. 1990a; Carbon catabolite regulation of phenylacetyl-CoA ligase from Pseudomonas putida. Biochem Biophys Res Commun 167:891–897
    [Google Scholar]
  37. Martinez-Blanco H., Reglero A., Rodríguez-Aparício L. B., Luengo J. M. 1990b; Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem 265:7084–7090
    [Google Scholar]
  38. Matsushita K., Ameyama M. 1992; D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol 89:149–154
    [Google Scholar]
  39. Milson P. E., Meers J. L. 1985; Gluconic and itaconic acids. In Comprehensive Biotechnology, Edited by M. Moo Young. Oxford:. Pergamon Press. 3:681–700
    [Google Scholar]
  40. Mortenson L. E., Wilson P. W. 1954; Initial stages in the breakdown of carbohydrates by Azotobacter vinelandii. Arch Biochem Biophys 53:425–435
    [Google Scholar]
  41. Neu H. C., Heppel L. A. 1965; The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692
    [Google Scholar]
  42. Ornston L. N. 1971; Regulation of catabolic pathways in Pseudomonas. Bacteriol Rev 35:87–116
    [Google Scholar]
  43. Ortiz A. I., Reglero A., Rogríguez-Aparicio L. B., Luengo J. M. 1989; In vitro synthesis of colominic acid by membrane-bound sialyltransferase of Escherichia coli K-235. Kinetic properties of this enzyme and inhibition by CMP and other cytidine nucleotides. Eur J Biochem 178:741–749
    [Google Scholar]
  44. Petruccioli M., Fenice M., Piccioni P. 1993; Distribution and typology of glucose oxidase activity in the genus Penicillium. Lett Appl Microbiol 17:285–288
    [Google Scholar]
  45. Quay S. C., Friedrnan S. B., Eisenberg R. C. 1972; Gluconate regulation of glucose catabolism in Pseudomonas fluorescens. J Bacteriol 112:291–298
    [Google Scholar]
  46. Ramos J. L., Timmis K. N. 1987; Experimental evolution of catabolic pathways of bacteria. Microbiol Sci 4:228–237
    [Google Scholar]
  47. Rodríguez-Aparicio L. B., Reglero A., Luengo J. M. 1987; Uptake of N-acetylneuraminic acid by Escherichia coli K-235. Biochemical characterization of the transport system. Biochem J 246:287–294
    [Google Scholar]
  48. Rodríguez-Aparicio L. B., Reglero A., Ortiz A. I., Luengo J. M. 1988; A protein-sialyl polymer complex involved in colominic acid biosynthesis. Biochem J 251:589–596
    [Google Scholar]
  49. Schleissner C., Olivera E. R., Fernández-Valverde M., Luengo J. M. 1994; Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-Coenzyme A is a catabolic intermediate. J Bacteriol 176:7667–767
    [Google Scholar]
  50. Sih C. J., Knight S. G. 1956; Carbohydrate metabolism of Penicillium chrysogenum. J Bacteriol 72:694–699
    [Google Scholar]
  51. Steinbüchel A., Krüger N., Valentin H., Timm A., Pries A., Hustede E., Schegel H. G. 1992; Physiological and genetic analysis of polyhydroxyalkanoate biosynthetic pathways. In Pseudomonas: Molecular Biology and Biotechnology, Edited by E. Galli, S. Silver & B. Witholt. Washington, DC:. American Society for Microbiology.315–327
    [Google Scholar]
  52. Stinson M. W., Cohen M. A., Merrick J. M. 1977; Purification and properties of the periplasmic glucose-binding protein of Pseudomonas aeruginosa. J Bacteriol 131:672–681
    [Google Scholar]
  53. Strecker H. J. 1955; Glucose dehydrogenase from liver. Methods Enzymol 1:335–339
    [Google Scholar]
  54. Stubbs J. J., Lockwood L. B., Roe E. T., Tabenkin B., Ward G. E. 1940; Ketogluconic acids from glucose. Ind Eng Chem 32:1626–1630
    [Google Scholar]
  55. Troy F. A., Vijay I. K., McCloskey M. A., Rohr T. E. 1982; Synthesis of capsular polymers containing polysialic acid in Escherichia coli O7-K1. Methods Enzyrnol 83:540–548
    [Google Scholar]
  56. Tsai C. S., Ye H. G., Sni J. L. 1995; Carbon-13 NMR studies and purification of gluconate pathway enzymes from Schisosaccharomyces pombe. Arch Biochem Biophys 316:155–162
    [Google Scholar]
  57. Van Dijken J. P., Veenhuis M. 1980; Cytochemical localization of glucose oxidase in peroxisomes of A. niger. Eur J Appl Microbiol Biotechno 9:275–283
    [Google Scholar]
  58. Vicente M., Canovas J. L. 1973; Glycolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants. J Bacteriol 116:908–914
    [Google Scholar]
  59. Whiting P. H., Midgley M., Dawes E. A. 1976a; The role of glucose limitation in the regulation of the transport of glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa. J Gen Microbiol 92:304–310
    [Google Scholar]
  60. Whiting P. H., Midgley M., Dawes E. A. 1976b; The regulation of transport of glucose, gluconate and 2-oxogluconate and of glucose catabolism in Pseudomonas aeruginosa. Biochem J 154:659–668
    [Google Scholar]
  61. Witteveen C. F. B., van de Vordervoort P., Swart K., Visser J. 1990; Glucose oxidase overproducing and negative mutants of Aspergillus nidulans . Appl Environ Microbiol 33:683–686
    [Google Scholar]
  62. Wood W. A., Schwert R. F. 1953; Carbohydrate oxidation by Ps. fluorescens. J Biol Chem 201:501–511
    [Google Scholar]
  63. Wood W. A., Schwert R. F. 1954; Carbohydrate oxidation by Pseudomonas fluorescens. II. Mechanism of hexose phosphate oxidation. J Biol Chem 206:625–635
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-5-1595
Loading
/content/journal/micro/10.1099/00221287-143-5-1595
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error