1887

Abstract

Biosynthesis of periplasmic cyclic 1,2--glucans in strain REO198 and strain S19 was found to be carried out by membrane-bound enzymes that use UDP-glucose (UDP-Glc) as donor substrate. Contrary to what happens in species of the genera and , the accumulation of the reaction products in appeared not to be osmoticaliy regulated. Incubation of permeabilized cells with UDP-[C]Glc led to the formation of soluble neutral cyclic 1,2--glucans and [C]glucose-labelled glucoproteins. PAGE of pulse–chase experiments carried out with permeabilized cells showed that the molecular mass of the labelled protein was indistinguishable from A348 and USDA191 glucoproteins known to be intermediates in the synthesis of cyclic glucans. total membrane preparations were less efficient than permeabilized cells in the formation of cyclic glucan; this was attributed to defective cyclization. Accumulation of protein intermediates having oligosaccharides of high molecular mass that were not released from the protein was observed after chase with 2 mM UDP-Glc. This defect was not observed when permeabilized cells were used as enzyme preparation, thus suggesting that in a factor(s) that was lost or inactivated upon the preparation of membranes was required for the effective regulation between elongation and cyclization reactions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1115
1997-04-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1115.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1115&mimeType=html&fmt=ahah

References

  1. Abe A., Amemura A., Higashi S. 1982; Studies on cyclic β(1-2) glucan obtained from periplasmic space of Rhizobium trifolii cells.. Plant Soil 64:315–324
    [Google Scholar]
  2. Altabe S., Iñón de Iannino N., de Mendoza D., Ugalde R. A. 1990; Expression of the Agrobacterium tumefaciens chvB virulence region in Azospirillum spp.. J Bacteriol 172:2563–2567
    [Google Scholar]
  3. Bundle D. R., Cherwonogrodzky J. W., Perry M. B. 1987; The structure of the lipopolysaccharide O-chain (M antigen) and polysaccharide B produced by Brucella melitensis 16M.. FEMS Lett 216:261–264
    [Google Scholar]
  4. Bundle D. R., Cherwonogrodzky J. W., Perry M. B. 1988; Characterisation of Brucella polysaccharide B.. Infect Zmmun 56:1101–1106
    [Google Scholar]
  5. Breedveld M. W., Zevenhuizen L. P. T. M., Zehnder A. J. B. 1990; Osmotically induced oligo- and polysaccharide synthesis by Rhizobium meliloti SU-47.J . Gen Microbiol 136:2511–2519
    [Google Scholar]
  6. Cangelosi G. A., Martinetti G., Leigh J. A., Chang Lee C., Theines C., Nester E. W. 1989; Role for Agrobacterium tumefaciens ChvA protein in export of β(1-2) glucan.. J Bacteriol 171:1609–1615
    [Google Scholar]
  7. Cangelosi G. A., Martinetti G., Nester E. W. 1990; Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic β(1,2)-glucan.. J Bacteriol 172:2172–2174
    [Google Scholar]
  8. Cherwonogrodzky J. W., Dubray G., Moreno E., Mayer H. 1990; Antigens of Brucella. In Animal Brucellosis, pp.. 19–64 Edited by K. Nielsen & J. R. Duncan. Boca Raton: CRC Press..
    [Google Scholar]
  9. De Lay J., Mannheim W., Segers P., Lievens A., Denijn M., Vanhoucke M., Gillis M. 1987; Ribosomal ribonucleic acid cistron similarities and taxonomic neighbourhood of Brucella and CDC group Vd.. Int J Syst Bacteriol 37:35–42
    [Google Scholar]
  10. Dische Z. 1962; General colour reactions.. Methods Carbohydr Chem 1:478–492
    [Google Scholar]
  11. Douglas C. J., Staneloni R. J., Rubin R. A., Nester E. W. 1985; Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region.. J Bacteriol 161:850–860
    [Google Scholar]
  12. Dylan T., lelpi L., Stanfield S., Kashyap L., Douglas C., Yanofsky M., Nester E. W., Helinski D. R., Ditta G. 1986; Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens.. Proc Natl Acad Sci USA 83:4403–4407
    [Google Scholar]
  13. Dylan T., Helinski D. R., Ditta G.S. 1990; Hypoosmotic adaptation in Rhizobium meliloti requires β(1-2) glucan.. J Bacteriol 172:1400–1408
    [Google Scholar]
  14. Finan T. M., Hirsch A. M., Leigh J. A., Johansen E. J., Kuldau G. A., Deegan S., Walker G. C., Signer E. R. 1985; Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation.. Cell 40:869–877
    [Google Scholar]
  15. Geremia R. A., Cavaignac S., Zorreguieta A, Toro N., Olivares J., Ugalde R. A. 1987; A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharide but fails to form β(1-2) glucan.. J Bacteriol 169:880–884
    [Google Scholar]
  16. Hisamatsu M., Amemura A., Koizumi K., Utamura T., Okada Y. 1983; Structural studies on cyclic(1-2)-beta-d-glucans(cyclo-sophoraose) produced by Agrobacterium and Rhizobium.. Carbohydr Res 121:31–40
    [Google Scholar]
  17. Iñón de Iannino N., Ugalde R. A. 1989; Biochemical characterization of avirulent Agrobacterium tumefaciens chvA mutants : synthesis and excretion of β(1-2) glucan.. J Bacteriol 171:2842–2849
    [Google Scholar]
  18. Iñón de Iannino N., Ugalde R. A. 1993; Biosynthesis of cyclic β(1-3),β(1-6) glucan in Bradyrhizobium spp.. Arch Microbiol 159:30–38
    [Google Scholar]
  19. Iñón de Iannino N., Briones G., Tolmasky M. E., Ugalde R. A. 1996; Molecular cloning of a Brucella abortus gene that complements an ndvB deficient mutant of Rhizobium meliloti. In Abstracts of the 96th ASM General Meeting, New Orleans, Louisiana, USA . 19–23May 1996
    [Google Scholar]
  20. Leigh J., Signer E. R., Walker G. C. 1985; Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules.. Proc Natl Acad Sci USA 82:6231–6235
    [Google Scholar]
  21. Miller K. J., Kennedy E. P., Reinhold V. N. 1986; Osmotic adaptation by Gram-negative bacteria: possible role for periplasmic oligosaccharides.. Science 231:48–51
    [Google Scholar]
  22. Moreno E., Berman D. T., Boetcher L. A. 1981a; Biological activities of Brucella abortus lipopolysaccharides.. Infect Immun 31:362–370
    [Google Scholar]
  23. Moreno E., Speth S.L., Jones L. M., Berman D. T. 1981b; Immunochemical characterization of Brucella lipopolysaccharides and polysaccharides.. Infect Immun 31:214–222
    [Google Scholar]
  24. Moriyon I., Berman D. T. 1982; Effects of nonionic, ionic, and dipolar ionic detergents and EDTA on the Brucella cell envelope.. J Bacteriol 152:822–828
    [Google Scholar]
  25. Puvanesarajah V., Schell F. M., Stacey G., Douglas C. J., Nester E. W. 1985; Role for 2-linked β-d-glucan in the virulence of Agrobacterium tumefaciens.. J Bacteriol 164:102–106
    [Google Scholar]
  26. Reeves P. 1995; Role of O-antigen variation in the immune response.. Trends Microbio 3:381–385
    [Google Scholar]
  27. Smith L. D., Ficht T. A. 1990; Pathogenesis of Brucella.. Crit Rev Microbiol 17:209–229
    [Google Scholar]
  28. Stabel T. J., Sha Z., Mayfield J. 1994; Periplasmic location of Brucella abortus Cu/Zn superoxide dismutase.. Vet Microbiol 38:307–314
    [Google Scholar]
  29. Triplett E. W., Breil B. T., Splitter G. A. 1994; Expression of tfx and sensitivity to the rhizobial peptide antibiotic trifolitoxin in a taxonomically distinct group of α-Proteobacteria including the animal pathogen Brucella abortus.. Appl Enuiron Microbiol 60:4163–4166
    [Google Scholar]
  30. Tully R. E., Keister D. L., Gross K. C. 1990; Fractionation of the β-linked glucans of Bradyrhizobium japonicum and their response to osmotic potential.. Appl Enuiron Microbiol 56:1518–1522
    [Google Scholar]
  31. Whatley M. H., Bodwin, J. S., Lippincott B. B., Lippincott J. A. 1976; Role for Agrobacterium cell envelope lipopolysaccharide in infection site attachment.. Infect Zmmun 13:1080–1083
    [Google Scholar]
  32. Williamson G., Damani K., Devenney P., Faulds C. B., Morris V. J., Stevens B. J. H. 1992; Mechanism of action of cyclic p( 1-2)- glucan synthetase from Agrobacterium tumefaciens : competition between cyclization and elongation reactions.. J Bacteriol 174:7941–7947
    [Google Scholar]
  33. Worthington Diagnostic Systems Inc. 1982; Worthington Enzyme Manual. Freehold, NJ : Worthington Diagnostic Laboratories..
    [Google Scholar]
  34. Williamson K., Tachibana Y., Kobata A. 1978; The structures of the galactose-containing sugar chains of ovalbumin.. J Biol Chem 253:3862–3869
    [Google Scholar]
  35. York W. S., McNeil M., Darvill A. G., Albersheim P. 1978; Beta-2-linked glucans secreted by fast-growing species of Rhizobium.. Bacteriol 142:243–248
    [Google Scholar]
  36. Zevenhuizen L. P. T. M., van Neerven A. R. W. 1983; (1-2)-β-d-Glucan and acyclic oligosaccharides produced by Rhizobium meliloti.. Carbohydr Res 118:127–134
    [Google Scholar]
  37. Zevenhuizen L. P. T. M., van Neerven A., Fokkens R. H. 1990; Re-examination of cellular cyclic β-1,2-glucans of Rhizobiaceue: distribution of ring sizes and degrees of glycerol-l-phosphate substitution.. Antonie Leeuwenhoek 57:173–178
    [Google Scholar]
  38. Zorreguieta A., Ugalde R. A. 1986; Formation in Rhizobium and Agrobacterium spp. of a 235-kilodalton protein intermediate in β-d(l,2)glucan synthesis.. J Bacteriol 167:947–951
    [Google Scholar]
  39. Zorreguieta A., Cavaignac S., Geremia R. A., Ugalde R. A. 1990; Osmotic regulation of β(1-2) glucan synthesis in members of the family Rhizobiaceae.. J Bacteriol 172:4701–4704
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-4-1115
Loading
/content/journal/micro/10.1099/00221287-143-4-1115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error