1887

Abstract

The L-arabinose metabolic genes and , encoding L-arabinose isomerase, L-ribulokinase and L-ribulose-5-phosphate 4-epimerase, respectively, have been cloned previously and the products of and were shown to be functionally homologous to their counterparts by complementation experiments. Here we report that and , whose inactivation leads to an Ara phenotype, are the first three ORFs of a nine cistron transcriptional unit with a total length of 11 kb. This operon, called , is located at about 256 on the genetic map and contains six new genes named and . Expression of the operon is directed by a strong s-like promoter identified within a 150 bp DNA fragment upstream from the translation start site of . Analysis of the sequence of the operon showed that the putative products of and are homologous to bacterial components of binding-protein-dependent transport systems and most probably encodes an a-L-arabinofuranosidase. The functions of and are unknown. An -constructed insertion-deletion mutation in the region downstream from allowed us to demonstrate that and are not essential for L-arabinose utilization. Studies with strains bearing transcriptional fusions of the operon to the gene revealed that expression from the promoter is induced by L-arabinose and repressed by glucose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-3-957
1997-03-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/3/mic-143-3-957.html?itemId=/content/journal/micro/10.1099/00221287-143-3-957&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis.. J Bacterial 81:741–746
    [Google Scholar]
  2. Chasin L.A., Magasanik B. 1968; Induction and repression of the histidine-degrading enzymes of Bacillus subtilis.. J Biol Chem 243:5165–5178
    [Google Scholar]
  3. Dale R.M.K., McClure B.A., Houchins J.P. 1985; A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18S rDNA.. Plasmid 13:31–40
    [Google Scholar]
  4. Dassa E., Hofnung M. 1985; Sequence of malG gene in E. coliK12: homologies between integral membrane components from binding protein-dependent transport systems.. EMBO J 4:2287–2293
    [Google Scholar]
  5. Debarbouillé M., Arnaud M., Foust A., Klier A., Rapoport G. 1990; The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators.. J Bacterial 172:3966–3973
    [Google Scholar]
  6. Deutscher J., Reizer J., Fischer C., Galinier A., Saier M.H. Jr Steinmetz M. 1994; Loss of protein kinase-catalyzed phosphorylation of Hpr, a phospho-carrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistence to several catabolic genes of B. subtilis.. J Bacterial 176:3336–3344
    [Google Scholar]
  7. Englesberg E., Squires C., Meronk F. 1969; The arabinose operon in Escherichia coli B/r: a genetic demonstration of two functional states of the product of a regulatory gene. Proc Natl Acad Sci USA 806790–6794
    [Google Scholar]
  8. Ferrari E., Nguyen A., Lang D., Hoch J. 1983; Construction and properties of an integrable plasmid for Bacillus subtilis.. J Bacterial 154:1513–1515
    [Google Scholar]
  9. Fisher S.H., Strauch M.A., Atkinson M.R., Wray L.V. Jr 1994; Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB.. J Bacterial 176:1903–1912
    [Google Scholar]
  10. Fujita Y., Fujita T. 1987; The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator.. Proc Natl Acad Set USA 844524–4528
    [Google Scholar]
  11. Gärtner D., Degenkolb J., Rippberger J., Allmansberger R., Hillen W. 1992; Regulation of Bacillus subtilis W23 xylose utilization operon: interaction of Xyl repressor with xyl operator and the inducer xylose. Mol Gen Genet 232:415–22
    [Google Scholar]
  12. Gay P., Cordier P., Marquet M., Delobbe A. 1973; Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations. Mol Gen Genet 121:355–368
    [Google Scholar]
  13. Gierasch L.M. 1989; Signal sequences. Biochemistry 28:923–930
    [Google Scholar]
  14. Gilead S., Shoham Y. 1995; Purification and characterization of α-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 61:170–174
    [Google Scholar]
  15. Gilson E., Alloing G., Schmidt T., Claverys J.-P., Dudler R., Hofnung M. 1988; Evidence for high-affinity binding-protein dependent systems in Gram-positive bacteria and Mycoplasma.. EMBO J 7:3971–3974
    [Google Scholar]
  16. Hayashi S., Wu H.C. 1990; Lipoproteins in bacteria. J Bioenerg Biomembr 22:451–71
    [Google Scholar]
  17. Higgins C.F., Hyde S.C, Mimmack M.M., Gileadi U., Gill D.R., Gallagher M.P. 1990; Periplasmic binding-protein dependent systems. J Bioenerg Biomemb 22:571–592
    [Google Scholar]
  18. Horazdovsky B., Hogg R. 1989; Genetic reconstitution of the high-affinity L-arabinose operon in Escherichia coli.. J Bacterial 171:3053–3059
    [Google Scholar]
  19. Hueck C.J., Hillen W. 1995; Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria?. Mol Microbiol 15:395–401
    [Google Scholar]
  20. Igo M.M., Losick R. 1986; Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis.. J Mol Biol 191:615–624
    [Google Scholar]
  21. Kaji A., Saheki T. 1975; Endo-arabanase from Bacillus subtilisF-11.. Biochim Biophys Acta 410:354–360
    [Google Scholar]
  22. Kaneko Y., Toh-e A., Banno I., Oshima Y. 1989; Molecular characterization of a specific p-nitrophenylphosphatase gene, PH013, and its mapping by chromosome fragmentation in Saccharomyces cerevisiae.. Mol Gen Genet 220:133–139
    [Google Scholar]
  23. Katz L. 1970; Selection of araB and araC mutants of Escherichia coli B/r by resistance to ribitol.. J Bacterial 102:593–595
    [Google Scholar]
  24. Kolodrubetz D., Schleif R. 1981; L-Arabinose transport systems in Escherichia coli K12.. J Bacterial 148:472–479
    [Google Scholar]
  25. Kyte J., Doolittle R.F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  26. Lepesant J.A., Dedonder R. 1967a; Metabolisme du L-arabinose chez Bacillus subtilis Marburg Ind 168.. C R Acad Sci Ser D2683–2686
    [Google Scholar]
  27. Lepesant J.A., Dedonder R. 1967b; Isolement de mutants du système du L-arabinose chez Bacillus subtilis Marburg Ind 168.. C R Acad Sci Ser D2832–2835
    [Google Scholar]
  28. Martin I., Debarbouillé M., Ferrari E., Klier A., Rapoport G. 1987; Characterization of the levanase gene of Bacillus subtiliswhich shows homology to yeast invertase. Mol Gen Genet 208:177–184
    [Google Scholar]
  29. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  30. Moran C.P. Jr 1993; RNA polymerase and transcription factors.. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology and Molecular Genetics pp. 653–667 Sonensheim A.L., Hoch J.A., Losick R. Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  31. Moran C.P. Jr Lang N., LeGrice S.F.J., Lee G., Stephens M., Sonensheim A.L., Pero J., Losick R. 1982; Nucleotide sequences that signal the initiation of transcription in Bacillus subtilis.. Mol Gen Genet 186:339–346
    [Google Scholar]
  32. Nagarajan V. 1993; Protein secretion.. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology and Molecular Genetics pp. 713–726 Sonensheim A.L., Hoch J.A., Losick R. Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  33. Novotny C., Englesberg E. 1966; The L-arabinose permease system in Escherichia coli B/r. Biochim Biophys Acta 117:217–230
    [Google Scholar]
  34. Pascal M., Kunst F., Lepesant J.A., Dedonder R. 1971; Characterization of two sucrase activities in Bacillus subtilisMarburg. Biochem 53:1059–1066
    [Google Scholar]
  35. Paveia H., Archer L. 1992a; Genes for L-arabinose utilization in Bacillus subtilis.. Brotéria Genética Lisboa XIII (LXXX)149–159
    [Google Scholar]
  36. Paveia H., Archer L. 1992b; Mapping of ara genes in Bacillus subtilis.. Broteria Genetica Lisboa XIII (LXXX)161–167
    [Google Scholar]
  37. Perego M. 1993; Integrational vectors for genetic manipulation in Bacillus subtilis. . In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology and Molecular Genetics pp. 615–624 Sonensheim A.L., Hoch J.A., Losick R. Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  38. Perego M., Higgins C.F., Pearce S.R., Gallagher M.P., Hoch J.A. 1991; The oligopeptide transport system of Bacillus subtilisplays a role in the initiation of sporulation. Mol Microbiol 5:173–185
    [Google Scholar]
  39. Perkins J.B., Youngman P.J. 1986; Construction and properties of Tn917-lac, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis.. Proc Natl Acad Sci USA 83140–144
    [Google Scholar]
  40. Plumbridge J.A. 1989; Sequence of the nagBACD operon in Escherichia coli K12 and pattern of transcription within the nagregulon.. Mol Microbiol 3:505–515
    [Google Scholar]
  41. Saier M.H. Jr Chauvaux S., Cook G.M., Deutscher J., Paulsen I.T., Reizer J., Ye J.-J. 1996; Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142:217–230
    [Google Scholar]
  42. Sambrook J., Fritsch E.F. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  43. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibition. Proc Natl Acad Sci USA 74140–144
    [Google Scholar]
  44. Sá-Nogueira I., Lencastre H. 1989; Cloning and characterization of araA, araB and araD, the structural genes for L-arabinose utilization in Bacillus subtilis.. J Bacteriol 171:4088–4091
    [Google Scholar]
  45. Sá-Nogueira I., Paveia H., Lencastre H. 1988; Isolation of constitutive mutants for L-arabinose utilization in Bacillus subtilis.. J Bacteriol 170:2855–2857
    [Google Scholar]
  46. Saurin W., K#x0242;ster W., Dassa E. 1994; Bacterial binding protein-dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins. Mol Microbiol 12:993–1004
    [Google Scholar]
  47. Sullivan M.A., Yasbin R.E., Young F.E. 1984; New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29:21–26
    [Google Scholar]
  48. Tam R., Saier M.H. Jr 1993; Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346
    [Google Scholar]
  49. Tinoco I., Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246:40–1
    [Google Scholar]
  50. Weickert M.J., Chambliss G.H. 1990; Site-directed mutagenesis of a catabolic repression operator sequence in Bacillus subtilis.. Proc Natl Acad Sci USA 876238–6242
    [Google Scholar]
  51. Weinstein L., Albersheim P. 1979; Structure of plant cell walls. IX. Purification and partial purification of a wall-degrading endoarabanase and an arabinosidase from Bacillus subtilis.. Plant Physiol 63:425–32
    [Google Scholar]
  52. Wray L.V. Jr Pettengill F.K., Fisher S.H. 1994; Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site.. J Bacteriol 176:1894–1902
    [Google Scholar]
  53. Yang J., Dhamija S.S., Schweingruber M.E. 1991; Characterization of a specific p-nitrophenylphosphatase gene and protein of Schizosaccharomyces pombe.. Eur J Biochem 198:493–497
    [Google Scholar]
  54. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
/content/journal/micro/10.1099/00221287-143-3-957
Loading
/content/journal/micro/10.1099/00221287-143-3-957
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error