The expression and activity of the membrane-bound and periplasmic nitrate reductases have been assayed in Pd1222 grown under a range of aeration regimes in malate-limited or butyrate-limited chemostat cultures. In butyrate-limited cultures the expression of periplasmic nitrate reductase and the rate of nitrate reduction were high at all oxygen concentrations measured between 0% and 100% air saturation. By contrast, in malate-limited cultures expression of the periplasmic nitrate reductase was low at 80-100% air saturation but increased to a maximum between 20% and 50% air saturation. Aerobic nitrate reduction was much higher in butyrate-limited than in malate-limited cultures, demonstrating a significant role for this process during butyrate metabolism. The rate of nitrate respiration increased in both the malate- and butyrate-limited cultures as aerobic metabolism switched completely to anaerobic metabolism. Expression of the membrane-bound nitrate reductase could be detected in butyrate-limited chemostat cultures maintained at an oxygen level of 100% air saturation. No membrane-bound nitrate reductase was detectable under similar conditions in malate-limited cultures but expression was detected at oxygen concentrations of 50% air saturation and below. Taken together, the results show that the nature of the carbon substrate and oxygen concentration can both influence expression of the periplasmic and membrane-bound nitrate reductases. The conditions under which expression of the periplasmic nitrate reductase and aerobic nitrate respiration are maximal can be rationalized in terms of a role for the periplasmic nitrate reductase in dissipating excess reductant generated during oxidative metabolism of reduced carbon substrates.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error