1887

Abstract

The expression and activity of the membrane-bound and periplasmic nitrate reductases have been assayed in Pd1222 grown under a range of aeration regimes in malate-limited or butyrate-limited chemostat cultures. In butyrate-limited cultures the expression of periplasmic nitrate reductase and the rate of nitrate reduction were high at all oxygen concentrations measured between 0% and 100% air saturation. By contrast, in malate-limited cultures expression of the periplasmic nitrate reductase was low at 80-100% air saturation but increased to a maximum between 20% and 50% air saturation. Aerobic nitrate reduction was much higher in butyrate-limited than in malate-limited cultures, demonstrating a significant role for this process during butyrate metabolism. The rate of nitrate respiration increased in both the malate- and butyrate-limited cultures as aerobic metabolism switched completely to anaerobic metabolism. Expression of the membrane-bound nitrate reductase could be detected in butyrate-limited chemostat cultures maintained at an oxygen level of 100% air saturation. No membrane-bound nitrate reductase was detectable under similar conditions in malate-limited cultures but expression was detected at oxygen concentrations of 50% air saturation and below. Taken together, the results show that the nature of the carbon substrate and oxygen concentration can both influence expression of the periplasmic and membrane-bound nitrate reductases. The conditions under which expression of the periplasmic nitrate reductase and aerobic nitrate respiration are maximal can be rationalized in terms of a role for the periplasmic nitrate reductase in dissipating excess reductant generated during oxidative metabolism of reduced carbon substrates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-12-3767
1997-12-01
2021-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/12/mic-143-12-3767.html?itemId=/content/journal/micro/10.1099/00221287-143-12-3767&mimeType=html&fmt=ahah

References

  1. Becker S., Holighaus G., Gabrielczyk T., amp;Unden G. 1996; O2as the regulatory signal for FNR-dependent gene regulation in Escherichia coli.. J Bacteriol 178:4515–4521
    [Google Scholar]
  2. Bell L.C., Richardson D.J., Ferguson S.J. 1990; Periplasmic and membrane-bound respiratory nitrate reductases in Thio- sphaera pantotropha: the periplasmic enzyme catalyses the first step in aerobic denitrification.. FEBS Lett 265:85–87
    [Google Scholar]
  3. Bell L.C., Page M.D., Berks B.C., Richardson D.J., Ferguson S.J. 1993; Insertion of transposon Tn5 into a structural gene of the membrane-bound nitrate reductase of Thiosphaera pantotropha results in anaerobic overexpression of periplasmic nitrate reductase activity.. J Gen Microbiol 139:3205–3214
    [Google Scholar]
  4. Berks B.C., Richardson D.J., Robinson C., Reilly A., Aplin R.T., Ferguson S.J. 1994; Purification and characterisation of the periplasmic nitrate reductase from Thiosphaera pantotropha.. Eur J Biochem 220:117–124
    [Google Scholar]
  5. Berks B.C, Ferguson S.J., Moir J.W.B., Richardson D.J. 1995; Enzymes and associated electron transfer systems that catalyse the respiratory reduction of nitrogen oxides and oxy- anions.. Biochim Biophys Acta 1232:97–173
    [Google Scholar]
  6. Carter J.P., Richardson D.J., Spiro S. 1995a; The isolation and characterisation of a strain of Pseudomonas putida that can express a periplasmic nitrate reductase.. Arch Microbiol 163:159–166
    [Google Scholar]
  7. Carter J.P., Hsiao Y.H., Spiro S., Richardson D.J. 1995b; Soil and sediment bacteria capable of aerobic nitrate respiration.. Appl Environ Microbiol 61:2852–2858
    [Google Scholar]
  8. Craske A.L., Ferguson S.J. 1986; The respiratory nitrate reductase of Paracoccus denitrificans. Molecular characterisation and molecular properties.. Eur J Biochem 158:429–436
    [Google Scholar]
  9. Davies K.J.P., Lloyd D., Boddy L. 1989; The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa.. J Gen Microbiol 135:2445–2451
    [Google Scholar]
  10. de Gier J.-W. L., Lübben M., Reijnders W.N.M., Tipker C.A., Slotboom D.-J., van Spanning R.J.M., Stouthamer A.H., van der Oost J. 1994; The terminal oxidases of Paracoccus denitrificans.. Mol Microbiol 13:183–196
    [Google Scholar]
  11. Harms N., de Vries G.E., Maurer K., Veltkamp E., Stouthamer A.H. 1985; Isolation and characterisation of Paracoccus denitrificans mutants with defects in the metabolism of one-carbon compounds.. J Bacteriol 164:1064–1070
    [Google Scholar]
  12. Kuenen J.G. 1988; Ecology of nitrification and denitrification.. In The Nitrogen and Sulphur Cycles (SGM Symposium no. 42) pp. 161–218 Cole J.A., Ferguson S.J. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  13. Lazazzera B.A., Beinert H., Khoroshilova N., Kennedy M.C., Kiley P.J. 1996; DNA-binding and dimerization of the Fe-S containing FNR protein from Escherichia coli are regulated by oxygen.. J Biol Chem 271:2762–2768
    [Google Scholar]
  14. Lloyd D., Boddy L., Davies K.J.P. 1987; Persistence of bacterial denitrification under aerobic conditions: the rule rather than the exception.. FEMS Microbiol Ecol 45:185–190
    [Google Scholar]
  15. Ludwig W., Mittenhuber G., Freidrich C.G. 1993; Transfer of Thiosphaera pantotropha to Paracoccus denitrificans.. Int J Syst Bacteriol 43:363–367
    [Google Scholar]
  16. Moir J.W.B., Richardson D.J., Ferguson S.J. 1995; The expression of redox proteins of denitrification in Thiosphaera pantotropha grown with oxygen, nitrate, and nitrous oxide as electron acceptors.. Arch Microbiol 164:4349
    [Google Scholar]
  17. Richardson D.J., Ferguson S.J. 1992; The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grown Thiosphaera pantotropha.. Arch Microbiol 157:535–537
    [Google Scholar]
  18. Robertson L.A., Kuenen J.G. 1983; Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium.. J Gen Microbiol 129:2847–2855
    [Google Scholar]
  19. Robertson L.A., Kuenen J.G. 1984; Aerobic denitrification: a controversy revived.. Arch Microbiol 139:351–354
    [Google Scholar]
  20. Robertson L.A., Kuenen J.G. 1990; Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria.. Antonie Leeuwenhoek 57:139–152
    [Google Scholar]
  21. Robertson L.A., Kuenen J.G. 1992; Nitrogen removal from water and waste.. In Microbial Control of Pollution(SGM Symposium no. 48) pp. 227–267 Fry J.C., Gadd G.M., Herbert R.A., Jones C.W., Watson-Craik I.A. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  22. Robertson L.A., van Niel E.W.J., Torremans R.A.M., Kuenen J.G. 1988; Simultaneous nitrification and denitrifi-cation in aerobic chemostat cultures of Thiosphaera pantotropha.. Appl Environ Microbiol 54:2812–2818
    [Google Scholar]
  23. Robertson L.A., Dalsgaard T., Revsbech N.P., Kuenen J.G. 1995; Confirmation of aerobic denitrification in batch cultures, using gas chromatography and N-15 mass spectrometry.. FEMS Microbiol Ecol 18:113–119
    [Google Scholar]
  24. Sears H.J. 1995 The periplasmic nitrate reductase of Para- coccus denitrificans: physiological and genetic studies. PhD thesis University of East Anglia, UK.;
    [Google Scholar]
  25. Sears H.J., Ferguson S.J., Richardson D.J., Spiro S. 1993; The identification of a periplasmic nitrate reductase in Paracoccus denitrificans.. FEMS Microbiol Lett 113:107–112
    [Google Scholar]
  26. Sears H.J., Little P.J., Richardson D.J., Spiro S., Berks B.C., Ferguson S.J. 1997; Identification of an assimilatory nitrate reductase in mutants of Paracoccus denitrificans GB17 deficient in nitrate respiration.. Arch Microbiol 167:61–66
    [Google Scholar]
  27. van Spanning R.J.M., de Boer A.P.N., Reijnders W.N.M., Westerhoff H.V., Stouthamer A.H., van der Oost J. 1997; FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation.. Mol Microbiol 23:893–907
    [Google Scholar]
  28. Spiro S. 1994; The FNR family of transcriptional regulators.. Antonie Leeuwenhoek 66:23–26
    [Google Scholar]
  29. Spiro S., Guest J.R. 1990; FNR and its role in oxygen- regulated gene expression in Escherichia coli.. FEMS Microbiol Lett 75:399–428
    [Google Scholar]
  30. Stouthamer A.H., de Boer A.P.N., van der Oost J., van Spanning R.J.M. 1997; Emerging principles of inorganic nitrogen metabolism in Paracoccus denitrificans and related bacteria Antonie Leeuwenhoek . 71:33–41
    [Google Scholar]
  31. Thomsen J.K., Lønsmann Iversen J.J., Cox R.P. 1993; Interactions between respiration and denitrification during growth of Thiosphaera pantotropha in continuous culture.. FEMS Microbiol Lett 110:319–324
    [Google Scholar]
  32. Unden G., Trageser M., Duchene A. 1990; Effect of positive redox potential (>+400 mV) on expression of anaerobic respiratory enzymes of Escherichia coli.. Mol Microbiol 4:315–319
    [Google Scholar]
  33. van Verseveld H.W., Stouthamer A.H. 1978; Growth yields and the efficiency of oxidative phosphorylation during autotrophic growth of Paracoccus denitrificans on methanol and formate.. Arch Microbiol 118:21–26
    [Google Scholar]
  34. de Vries G.E., Harms N., Hoogendijk J., Stouthamer A.H. 1989; Isolation and characterisation of Paracoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying property.. Arch Microbiol 152:52–57
    [Google Scholar]
  35. Zumft W.G. 1992; The denitrifying prokaryotes.. In The Prokaryotes, 2nd edn.. pp. 554–582 Balows A., Triiper H.G., Dworkin M., Harder W., Schleifer K.-H. Edited by Berlin: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-12-3767
Loading
/content/journal/micro/10.1099/00221287-143-12-3767
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error