1887

Abstract

The gene of codes for invasin, a member of the invasin/intimin-like protein family, which mediates the internalization of the bacterium into cultured epithelial cells. The putative inclusion of inv into a pathogenicity island was tested by investigating its flanking sequences. Indeed, the enteropathogenic (EPEC) intimin, a member of the same family of proteins, is encoded by a gene which belongs to a pathogenicity island. An ORF located upstream from was of particular interest since it appeared homologous both to the flagellar gene and to an EPEC gene lying inside the same pathogenicity island as eaeA. A mutant in this ORF was non-motile and non-flagellated while its invasion phenotype remained unaffected. These data indicated that the ORF corresponded to the gene of Subsequently, the and genes, located respectively upstream and downstream from were identified. The three genes appear to be transcribed from a single operon called according to the nomenclature used for Intergenic sequence between and includes a grey hole, with no recognizable function. Downstream from we have detected the flagellar operon as already reported. Finally, the incongruous localization of amidst the flagellar cluster is discussed; while transposition could explain this phenomenon, no trace of such an event was detected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-11-3461
1997-11-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/11/mic-143-11-3461.html?itemId=/content/journal/micro/10.1099/00221287-143-11-3461&mimeType=html&fmt=ahah

References

  1. Allaoui A., Woestyn S., Sluiters C., Cornells G.R. 1994; YscU, a Yersinia enterocolitica inner membrane protein involved in Yop secretion.. J Bacteriol 176:4534–4542
    [Google Scholar]
  2. Altmeyer R.M., McNern J.K., Bossio J.C., Rosenshine I., Brett Finlay B., Gálan J.E. 1993; Cloning and molecular characterization of a gene involved in Salmonella adherence and invasion of cultured epithelial cells.. Mol Microbiol 7:89–98
    [Google Scholar]
  3. Andrews G.P., Maurelli A.T. 1992; mxiA of Shigella flexneri2a, which facilitates export of invasion plasmid antigens, encodes a homolog of the low-calcium-response protein, LcrD, of Yersinia pestis.. Infect Immun 60:3287–3295
    [Google Scholar]
  4. Arnosti D.N., Chamberlin M.J. 1989; Secondary σ factor controls transcription of flagellar and chemotaxis genes in Escherichia coli.. Proc Natl Acad Sci USA 86830–834
    [Google Scholar]
  5. Bartlett D.H., Frantz B.B., Matsumura P. 1988; Flagellar transcriptional activators FlbB and Flal: gene sequences and 5̓ consensus sequences of operons under FlbB and FlaI control.. J Bacteriol 170:1575–1581
    [Google Scholar]
  6. Boyer H.W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli.. J Mol Biol 41:459–472
    [Google Scholar]
  7. Carpenter P.B., Ordal G.W. 1993; Bacillus subtilis FlhA: a flagellar protein related to a new family of signal-transducing receptors.. Mol Microbiol 7:735–743
    [Google Scholar]
  8. China B., Michiels T., Cornells G.R. 1990; The pYV plasmid of Yersinia encodes a lipoprotein, YlpA, related to TraT.. Mol Microbiol 4:1585–1593
    [Google Scholar]
  9. Cornells G.R. 1994; Yersinia pathogenicity factors.. Curr Top Microbiol Immunol 192:243–263
    [Google Scholar]
  10. Daniels D.L., Plunkett G. III Burland V., Blattner F.R. 1992; Analysis of the Escherichia coli genome: DNA sequence of the region from 84·5 to 86·5 minutes.. Science 257:771–778
    [Google Scholar]
  11. Delor I., Kaeckenbeeck A., Wauters G., Cornells G.R. 1990; Nucleotide sequence of yst, the Yersinia enterocolitica gene encoding the heat-stable enterotoxin, and prevalence of the gene among pathogenic and nonpathogenic yersiniae.. Infect lmmun 58:2983–2988
    [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  13. Falkow S., Small P., Isberg R., Hayes S.F., Corwin D. 1987; A molecular strategy for the study of bacterial invasion.. Rev Infect Dis 9:S450–S455
    [Google Scholar]
  14. Fenselau S., Balbo I., Bonas U. 1992; Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacterial pathogens of animals.. Mol Plant-Microbe Interact 5:390–396
    [Google Scholar]
  15. Fickett J.W. 1982; Recognition of protein coding regions in DNA sequences.. Nucleic Acids Res 10:5303–5318
    [Google Scholar]
  16. Frankel G., Candy D.C., Everest P., Dougan G. 1994; Characterization of the C-terminal domains of intimin-like proteins of enteropathogenic and enterohemorrhagic Escherichia coli, Citrobacter freundii, and Hafnia alvei.. Infect Immun 62:1835–1842
    [Google Scholar]
  17. Galán J.E., Ginocchio C., Costeas P. 1992; Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family.. J Bacteriol 174:4338–4349
    [Google Scholar]
  18. Gillen K.L., Hughes K.T. 1991; Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium.. J Bacteriol 173:2301–2310
    [Google Scholar]
  19. Gough C.L., Genin S., Lopes V., Boucher C.A. 1993; Homology between the HrpO protein of Pseudomonas solanacearum and bacterial proteins implicated in a signal peptide-independent secretion mechanism.. Mol Gen Genet 239:378–392
    [Google Scholar]
  20. Groisman E.A., Ochman H. 1993; Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri.. EMBO J 12:3779–3787
    [Google Scholar]
  21. Gygi D., Bailey M.J., Allison C., Hughes C. 1995; Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis.. Mol Microbiol 15:761–769
    [Google Scholar]
  22. Haughn G.W., Wessler S.R., Gemmill R.M., Calvo J.M. 1986; High A + T content conserved in DNA sequences upstream of leuABCD in Escherichia coli and Salmonella typhimurium.. J Bacteriol 166:1113–1117
    [Google Scholar]
  23. Huang H.-C., Xiao Y., Lin R.-H., Lu Y., Hutcheson S.W., Collmer A. 1993; Characterization of the Pseudomonas syringaepv. syringae 61 hrpJ and hrpI genes: homology of HrpI to a superfamily of proteins associated with protein translocation.. Mol Plant-Microbe Interact 6:515–520
    [Google Scholar]
  24. lino T., Komeda Y., Kutsukake K., Macnab R.M., Matsumura P., Parkinson J.S., Simon M.I., Yamaguchi S. 1988; New unified nomenclature for the flagellar genes of Escherichia coliand Salmonella typhimurium.. Microbiol Rev 52:533–535
    [Google Scholar]
  25. Iriarte M., Stainier I., Mikulskis A., Cornelis G.R. 1995; fliA encoding sigma 28 in Yersinia enterocolitica.. J Bacteriol 177:2299–2304
    [Google Scholar]
  26. Isberg R.R., Falkow S. 1985; A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12.. Nature 317:262–264
    [Google Scholar]
  27. Isberg R.R., Voorhis D.L., Falkow S. 1987; Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells.. Cell 50:769–778
    [Google Scholar]
  28. Jarvis K.G., Giron J.A., Jerse A.E., McDaniel T.K., Donnen-berg M.S., Kaper J.B. 1995; Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation.. Proc Natl Acad Sci USA 927996–8000
    [Google Scholar]
  29. Jerse A.E., Yu J., Tall B.D., Kaper J.B. 1990; A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells.. Proc Natl Acad Sci USA 877839–7843
    [Google Scholar]
  30. Kaniga K., Delor I., Cornelis G.R. 1991; A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enter ocolitica.. Gene 109:137–141
    [Google Scholar]
  31. Kapatral V., Minnich S.A. 1995; Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes.. Mol Microbiol 17:49–56
    [Google Scholar]
  32. Kapatral V., Olson J.W., Pepe J.C., Miller V.L., Minnich S.A. 1996; Temperature-dependent regulation of Yersinia enterocolitica Class III flagellar genes.. Mol Microbiol 19:1061–1071
    [Google Scholar]
  33. Kim M.C. 1989 Molecular characterization and regulation of the gene expression offlhB operon in Escherichia coli. PhD thesis University of Illinois.:
    [Google Scholar]
  34. Knapp S., Hacker J., Jarchau T., Goebel W. 1986; Large, unstable inserts in the chromosome affect virulence properties of uropathogenic Escherichia coli 06 strain 536.. J Bacteriol 168:22–30
    [Google Scholar]
  35. Kolter R., Inuzuka M., Helinski D.R. 1978; Trans-complementation-dependent replication of a low molecular weight origin fragment from plasmid R6K.. Cell 15:1199–1208
    [Google Scholar]
  36. Kutsukake K., Ohya Y., lino T. 1990; Transcriptional analysis of the flagellar regulon of Salmonella typhimurium.. J Bacteriol 172:741–747
    [Google Scholar]
  37. Kutsukake K., Okada T., Yokoseki T., lino T. 1994; Sequence analysis of the flgA gene and its adjacent region in Salmonella typhimurium, and identification of another flagellar gene, flgN.. Gene 143:49–54
    [Google Scholar]
  38. Lambert de Rouvroit C., Sluiters C., Cornelis G.R. 1992; Role of the transcriptional activator, VirF, and temperature in the expression of the pYV plasmid genes of Yersinia enterocolitica.. Mol Microbiol 6:395–409
    [Google Scholar]
  39. Low D., David V., Lark D., Schoolnik G., Falkow S. 1984; Gene clusters governing the production of hemolysin and mannose-resistant hemagglutination are closely linked in Escherichia coli serotype 04 and 06 isolates from urinary tract infections.. Infect Immun 43:353–358
    [Google Scholar]
  40. McDaniel T.K., Jarvis K.G., Donnenberg M.S., Kaper J.B. 1995; A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens.. Proc Natl Acad Sci USA 921664–1668
    [Google Scholar]
  41. Macnab R.M. 1976; Examination of bacterial flagellation by dark-field microscopy.. J Clin Microbiol 4:258–265
    [Google Scholar]
  42. Macnab R.M. 1992; Genetics and biogenesis of bacterial flagella.. Annu Rev Genet 26:131–158
    [Google Scholar]
  43. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature.. J Mol Biol 5:109–118
    [Google Scholar]
  44. Mekalanos J.J. 1983; Duplication and amplification of toxin genes in Vibrio cholerae.. Cell 35:253–263
    [Google Scholar]
  45. Ménard R., Sansonetti P.J., Parsot C. 1993; Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells.. J Bacteriol 175:5899–5906
    [Google Scholar]
  46. Michiels T., Cornelis G.R. 1991; Secretion of hybrid proteins by the Yersinia Yop export system.. J Bacteriol 173:1677–1685
    [Google Scholar]
  47. Michiels T., Wattiau P., Brasseur R., Ruysschaert J.-M., Cornelis G. 1990; Secretion of Yop proteins by Yersiniae.. Infect Immun 58:2840–2849
    [Google Scholar]
  48. Miller S., Pesci E.C., Pickett C.L. 1993; A Campylobacter jejuni homolog of the LcrD/FlbF family of proteins is necessary for flagellar biogenesis.. Infect Immun 61:2930–2936
    [Google Scholar]
  49. Minamino T., lino T., Kutsukake K. 1994; Molecular characterization of the Salmonella typhimurium flhB operon and its protein products.. J Bacteriol 176:7630–7637
    [Google Scholar]
  50. Moon H.W., Whipp S.C., Argenzio R.A., Levine M.M., Giannella R.A. 1983; Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines.. Infect Immun 41:1340–1351
    [Google Scholar]
  51. Norrander J., Kempe T., Messing J. 1983; Construction of improved M13 vectors using oligodeoxynucleotide-directed muta-genesis.. Gene 26:101–106
    [Google Scholar]
  52. Ohnishi K., Kutsukake K., Suzuki H., lino T. 1992; A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an anti-sigma factor inhibits the activity of the flagellum-specific sigma factor, σF. . Mol Microbiol 6:3149–3157
    [Google Scholar]
  53. Pepe J.C., Miller V.L. 1993; Yersinia enterocolitica invasin: a primary role in the initiation of infection.. Proc Natl Acad Sci USA 906473–6477
    [Google Scholar]
  54. Plano G.V., Barve S.S., Straley S.C. 1991; LcrD, a membrane- bound regulator of the Yersinia pestis low-calcium response.. J Bacteriol 173:7293–7303
    [Google Scholar]
  55. Portnoy D.A., Moseley S.L., Falkow S. 1981; Characterization of plasmids and plasmid-associated determinants of Yersinia enterocolitica pathogenesis.. Infect lmmun 31:775–782
    [Google Scholar]
  56. Raha M., Kihara M., Kawagishi I., Macnab R.M. 1993; Organization of the Escherichia coli and Salmonella typhimuriumchromosomes between flagellar regions IIIa and IIIb, including a large non-coding region.. J Gen Microbiol 139:1401–1407
    [Google Scholar]
  57. Ramakrishnan G., Zhao J.-L., Newton A. 1991; The cell cycle-regulated flagellar gene flbF of Caulobacter crescentus is homologous to a virulence locus (IcrD) of Yersinia pestis.. J Bacteriol 173:7283–7292
    [Google Scholar]
  58. Salmond G.P.C., Reeves P.J. 1993; Membrane traffic wardens and protein secretion in Gram-negative bacteria.. Trends Biochem Sci 18:7–12
    [Google Scholar]
  59. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  60. Sasakawa C., Komatsu K., Tobe T., Suzuki T., Yoshikawa M. 1993; Eight genes in region 5 that form an operon are essential for invasion of epithelial cells by Shigella flexneri 2a.. J Bacteriol 175:2334–2346
    [Google Scholar]
  61. Schauer D.B., Falkow S. 1993; Attaching and effacing locus of a Citrobacter freundii biotype that causes transmissible murine colonic hyperplasia.. Infect lmmun 61:2486–2492
    [Google Scholar]
  62. Sharpies G.J., Lloyd R.G. 1990; A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes.. Nucleic Acids Res 18:6503–6508
    [Google Scholar]
  63. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria.. Bio/Technology 1:784–791
    [Google Scholar]
  64. Simonet M., Riot B., Fortineau N., Berche P. 1996; Invasin production by Yersinia pestis is abolished by insertion of an IS200-like element within the inv gene.. Infect Immun 64:375–379
    [Google Scholar]
  65. So M., Heffron F., McCarthy B.J. 1979; The E. coli gene encoding heat stable toxin is a bacterial transposon flanked by inverted repeats of IS1.. Nature 277:453–456
    [Google Scholar]
  66. Sory M.-P., Cornells G.R. 1994; Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells.. Mol Microbiol 14:583–594
    [Google Scholar]
  67. Staskawicz B., Dahlbeck D., Keen N., Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea.. J Bacteriol 169:5789–5794
    [Google Scholar]
  68. Stock A.M., Stock J.B. 1987; Purification and characterization of the CheZ protein of bacterial chemotaxis.. J Bacteriol 169:3301–3311
    [Google Scholar]
  69. Tabor S., Richardson C.C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes.. Proc Natl Acad Sci USA 821074–1078
    [Google Scholar]
  70. Umeda M. 1993 Genomic rearrangements caused by repetitive DNA sequences in bacteria and rice plant. PhD thesis University of Tokyo.:
    [Google Scholar]
  71. Waldor M.K., Mekalanos J.J. 1996; Lysogenic conversion by a filamentous phage encoding cholera toxin.. Science 272:1910–1914
    [Google Scholar]
  72. Wei Z.-M., Beer S.V. 1993; HrpI of Erwinia amylovorafunctions in secretion of harpin and is a member of a new protein family.. J Bacteriol 175:7958–7967
    [Google Scholar]
  73. Yu J., Kaper J.B. 1992; Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli 0157 :H7.. Mol Microbiol 6:411–417
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-11-3461
Loading
/content/journal/micro/10.1099/00221287-143-11-3461
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error