1887

Abstract

During a search for genes encoding electron transport proteins from a ATCC 33020 gene bank, a 19.8 kb plasmid, pTF5, which conferred increased sensitivity to the antimicrobial agent metronidazole upon an mutant, was isolated and cloned in The plasmid had an identical restriction enzyme map to a plasmid which has been found in strains isolated from many different parts of the world. The plasmid was present at between two and four copies per genome and contained a region of approximately 5.6 kb which was also found on the chromosome. This region was sequenced and found to have four complete ORFs, which when translated had high percentage amino acid similarity to [3Fe-4S,4Fe-4S] ferredoxins, proteins of the FNR regulator family, prismane-like proteins and the NADH oxidoreductase subunit of a methane monooxygenase. protein analysis using an -derived transcription-translation system indicated that three of the four products (FdxA, PsmA and RedA) were expressed in the heterologous system. Ferredoxins, prismane-like proteins and NADH oxidoreductases are redox-active proteins and it is likely that the proteins on pTF5 represent an electron transport system of as yet unknown function. Surprisingly, although genes for redox-active proteins have been isolated from other bacteria by screening gene banks for increased sensitivity to metronidazole, the region of pTF5 containing the genes for these proteins was not responsible for the increase in metronidazole sensitivity conferred by the plasmid. The region of pTF5 which did confer increased metronidazole sensitivity to an metronidazole-resistant mutant was a 319 bp region of DNA close to the origin of plasmid replication. This region contained no ORFs and was identical to that previously reported for the replicon of a 9.8 kb plasmid, pTFI91.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-10-3123
1997-10-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/10/mic-143-10-3123.html?itemId=/content/journal/micro/10.1099/00221287-143-10-3123&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Arai H., Igarashi Y., Kodama T. 1995; Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett 371:73–76
    [Google Scholar]
  3. Birkmann A., Sawers R. G., Bock A. 1987; Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli . Mol Gen Genet 210:535–542
    [Google Scholar]
  4. Brierley C. L. 1982; Microbiological mining. Sci Am 247:242–51
    [Google Scholar]
  5. Chakravarty L., Zupancic T. J., Baker B., Kittle J. D., Fry I. J., Tuovinen O. H. 1995; Characterization of the ptfi91-family replicon of Thiobacillus ferrooxidans plasmids. Can J Microbiol 41:354–365
    [Google Scholar]
  6. Clennel A.-M., Johnston B., Rawlings D. E. 1995; Structure and function of tn5467, a tn22-like transposon located on the Thiobacillus ferrooxidans broad-host-range plasmid pTF-FC2. Appl Environ Microbiol 61:4223–4229
    [Google Scholar]
  7. Davison S. P., Santangelo J. D., Reid S. J., Woods D. R. 1995; A Clostridium acetobutylicum regulator gene (regA) affecting amylase production in Bacillus subtilis. 141:989–996
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the vax. Nucleic Acids Res 12:387
    [Google Scholar]
  9. Dorrington R. A., Rawlings D. E. 1990; Characterization of the minimum replicon of the broad-host-range plasmid ptf-fc2 and similarity between ptf-fc2 and the incq plasmids. J Bacteriol 172:5697–5705
    [Google Scholar]
  10. Eberhard W. G. 1989; Why do bacterial plasmids carry some genes and not others?. Plasmid 21:167–174
    [Google Scholar]
  11. Edwards D. I., Mathison G. E. 1970; The mode of action of metronidazole against Trichomonas vaginalis.. J Gen Microbiol 63:297–302
    [Google Scholar]
  12. Green J., Sharrocks A. D., Green B., Geisow M., Guest J. R. 1993; Properties of FNR proteins substituted at each of the five cysteine residues. Mol Microbiol 8:61–68
    [Google Scholar]
  13. Hase T., Wakabayashi S., Matsubara H. 1978; . Pseudomonus ovalis ferredoxin : similarity to Azotobacter and Chromatiumferredoxins.. FEBS Lett 91:315–319
    [Google Scholar]
  14. Hightower R. C., Metge D. W., Dansi D. V. 1987; Plasmid migration using orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res 15:8387–8398
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  16. Leathen W. W., Kinsel N. A., Braley S. A. 1956; Ferrobacillus ferrooxidans: a chemosynthetic autotrophic bacterium. J Bacteriol 72:700–704
    [Google Scholar]
  17. Leclerc G., Noel G., Drapeau G. R. 1990; Molecular cloning, nucleotide sequence, and expression of shl, a new gene in the 2 minute region of the genetic map of Escherichia coli.. J Bacteriol 172:4696–4700
    [Google Scholar]
  18. Lundgren D. G., Silver M. 1980; Ore leaching by bacteria. Annu Rev Microbiol 34:263–283
    [Google Scholar]
  19. Marrit S. J., Farrar J. A., Breton J. L. J., Hagen W. R., Thomson A. J. 1995; Characterization of the prismane protein from Desulfovibrio vulgaris (Hildenborough) by low-temperature magnetic circular dichroic spectroscopy. Eur J Biochem 232:501–505
    [Google Scholar]
  20. Mason J. R., Cammack R. 1992; The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305
    [Google Scholar]
  21. Pierik A. J., Hagen W. R., Dunham W. R., Sands R. H. 1992; Multi-frequency EPR and high resolution mossbauer spectroscopy of a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough).. Eur J Biochem 206:705–719
    [Google Scholar]
  22. Polidoro M., Buonfiglio V., Lazzarini M., Valenti P., Orsi N. 1993; Functional characterization of a 20 kb plasmid present in different Thiobacillus ferrooxidans strains. Biohydrometallurgical Technologies vol. 2 pp. 595–602 Edited by Torma A. E., Apel M. L., Brierley C. L. Warendale, PA: TMS Press;
    [Google Scholar]
  23. Powles R. E., Deane S. M., Rawlings D. E. 1995; Molecular genetic analysis of a thioredoxin gene from Thiobacillus ferrooxidans.. Microbiology 141:2175–2181
    [Google Scholar]
  24. Ramesar R. S. 1988 Developmental Genetic Studies on Thiobacillus Ferroxidans PhD thesis University of Cape Town;
    [Google Scholar]
  25. Rawlings D. E., Kusano T. 1994; Molecular genetics of Thiobacillus ferrooxidans.. Microbiol Rev 58:39–55
    [Google Scholar]
  26. Rawlings D. E., Silver S. 1995; Mining with microbes. Bio/Technology 13:773–778
    [Google Scholar]
  27. Rawlings D. E., Woods D. R. 1985; Mobilization of Thiobacillus ferrooxidans plasmids among Escherichia coli strains.. Appl Environ Microbiol 49:1323–1325
    [Google Scholar]
  28. Rawlings D. E., Gawith C., Petersen A., Woods D. R. 1983; Characterisation of plasmids and potential genetic markers in Thiobacillus ferrooxidans . In Recent Progress in Biohydrometallurgy555–570 Edited by Rossi G., Torma A. E. Cagliari: Associazione Mineraria Sarda;
    [Google Scholar]
  29. Rohrer J., Rawlings D. E. 1992; Sequence analysis and characterization of the mobilization region of a broad-host-range plasmid, pTF-FC2, isolated from Thiobacillus ferrooxidans.. J Bacteriol 174:6230–6237
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sanchez H., Hevia E., Caceres B., Venegas A. 1986; Studies on native strains of Thiobacillus ferrooxidans. . Biotechnol Appl Biochem 8:300–308
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  33. Santangelo J. D., Jones D. T., Woods D. R. 1991; Metronidazole activation and the isolation of Clostridium acetobutylicum electron transport genes. J Bacteriol 173:1088–1095
    [Google Scholar]
  34. Sealy V. R. 1993 A Cluster of Two Serine Transfer RNA Genes from Clostridium Acetobutylicum P262 MSc thesis University of Cape Town;
    [Google Scholar]
  35. Silverman M. P., Lundgren D. G. 1959; Studies on the chemolithoautotrophic iron bacterium Ferrobacillus ferrooxidans . J Bacteriol 77:642–647
    [Google Scholar]
  36. Spiro S. 1994; The FNR family of transcriptional regulators. Antonie Leeuwenhoek 66:23–36
    [Google Scholar]
  37. Spiro S., Guest G. R. 1988; Inactivation of the fnr protein of Escherichia coli by targeted mutagensis in the N-terminal region.. Mol Microbiol 2:701–707
    [Google Scholar]
  38. Sprenger G. A. 1993; Nucleotide sequence of the Escherichia coli K-12 transketolase (tkt) gene. Biochim Biophys Acta 1216:307–310
    [Google Scholar]
  39. Stainthorpe A. G., Lees V., Salmond G., Dalton H., Murrell J. C. 1990; The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath).. Gene 91:27–34
    [Google Scholar]
  40. Stokkermans J. P. W. G., Pierik A. J., Wolbert R. B. G., Hagen W. R., van Dongen W. M. A. M., Veeger C. 1992; The primary structure of a protein containing a putative [6Fe-6S] prismane cluster from Desulfovibrio vulgaris (Hildenborough) .. Eur J Biochem 208:435–442
    [Google Scholar]
  41. Stokkermans J. P. W. G., Van Den Berg W. A. M., Van Dongen W. M. A. M., Veeger C. 1992; The primary structure of a protein containing a putative [6Fe-6S] prismane cluster from Desulfovibrio desulfuricans (ATCC 27774). Biochim Biophys Acta 1132:83–87
    [Google Scholar]
  42. Valenti P., Polidoro M., Buonfiglio V., Visca P., Orsi N. 1989; Comparative analysis of Thiobacillus ferrooxidans strains.. In Biohydrometallurgy Edited by McCready R. G. L., Wichlacz P. L. pp. 187–201 Ottawa: CANMET;
    [Google Scholar]
  43. Valenti P., Polidoro M., Buonfiglio V., Visca P., Orsi N. 1990; Plasmid DNA profiles in Thiobacillus ferrooxidans.. J Gen Appl Microbiol 36:351–355
    [Google Scholar]
  44. Van Spanning R. J., De Boer A. P., Reijnders W. N., Spiro S., Westerhoff H. V., Stouthamer A. H., Van Der Oost J. 1995; Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators.. FEBS Lett 360:151–154
    [Google Scholar]
  45. Wall J. D., Love J., Quinn S. P. 1984; Spontaneous Nif-mutants of Rhodopseudomonas capsulata.. J Bacteriol 159:652–657
    [Google Scholar]
  46. Worley K. C., Wiese B. A., Smith R. F. 1995; BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results.. Genome Res 5:173–184
    [Google Scholar]
  47. Yates J. R., Holmes D. S. 1987; Two families of repeated DNA sequences in Thiobacillus ferrooxidans . J Bacteriol 169:1861–1870
    [Google Scholar]
  48. Yates J. R., Cunningham R. P., Holmes D. S. 1988; IST2: An insertion sequence from Thiobaciflus ferrooxidans.. Proc Natl Acad Sci USA 85:7284–7287
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-10-3123
Loading
/content/journal/micro/10.1099/00221287-143-10-3123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error