1887

Abstract

The gene from was cloned using a labelled RNA probe representing the coding region of the gene from . DNA sequencing revealed an ORF of 1452 bp encoding a protein of 484 amino acid residues with a calculated molecular mass of 54611 Da. An RNA probe corresponding to was also used for Southern hybridization of chromosomal DNA, which showed that -related DNA sequences are also present in the alginate-producing phytopathogen species and pv. . The coding region of was subcloned in the expression vector pT7-7, leading to a corresponding gene product with an apparent molecular mass of 54 kDa which could be identified in the outer membrane (OM) of BL21(DE3). Additionally, a cross-reacting protein with the same molecular mass was also found in the OM of using an anti-AlgE antiserum. The derived amino acid sequence of AlgJ shared approximately 52% identity with AlgE from . The hydrophilicity profile as well as the amphipathicity of regions in the amino acid sequence of AlgJ showed significant similarities to AlgE. Based on these data, a topological model of AlgJ was created with the aid of known structures of outer-membrane proteins. This model presents AlgJ as a ß-barrel containing 18 ß-strands inserted in the OM.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-4-873
1996-04-01
2021-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/4/mic-142-4-873.html?itemId=/content/journal/micro/10.1099/00221287-142-4-873&mimeType=html&fmt=ahah

References

  1. Chu L., May T.B., Chakrabarty A.M., Misra T.K. Nucleotide sequence and expression of the algE gene involved in alginate biosynthesis by Pseudomonas aeruginosa. Gene 1991; 107:1–10
    [Google Scholar]
  2. Cowan S.W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R.A., Jansonius J.N., Rosenbusch J.P. Crystal structures explain functional properties of two E coli porins. Nature 1992; 358:727–733
    [Google Scholar]
  3. Ertesväg H., Doseth B., Larsen B., Skjäk-Braek G., Valla S. Cloning and expression of an Azotobacter vinelandii mannuronan C-5-epimerase gene. J Bacteriol 1994; 176:2846–2853
    [Google Scholar]
  4. Ertesväg H., Hoidal H.K., Hals I.K., Doseth B., Valla S. A family of modular type mannuronan C-5-epimerase genes controls alginate structure in Azotobacter vinelandii. Mol Microbiol 1995; 16:719–731
    [Google Scholar]
  5. Fett W.F., Osman S.F., Fishman M.C., Siebles T.S. Alginate production by plant pathogenic pseudomonads. Appl Environ Microbiol 1986; 52:466–473
    [Google Scholar]
  6. Fialho A.M., Zielinski N.A., Fett W.F., Chakrabarty A.M., Berry A. Distribution of alginate gene sequences in the Pseudomonas rRNA homology group l-Azomonas-Azotobacter lineage of superfamily B procaryotes. Appl Environ Microbiol 1990; 56:436–443
    [Google Scholar]
  7. Frosch M., Müller D., Bousset K., Müller A. Conserved outer membrane protein of Neisseria meningitidis involved in capsule expression. Infect Immun 1992; 60:798–809
    [Google Scholar]
  8. Gacesa P., Russell N.J. The structure and properties of alginate. In Pseudomonas Infection and Alginates 1990 Edited by Gacesa P., Russell N.J. London: Chapman and Hall; pp 29–49
    [Google Scholar]
  9. Gorin P.A.J., Spencer J.F.T. Exocellular alginic acid from Azotobacter vinelandii. Can J Chem 1966; 44:993–998
    [Google Scholar]
  10. Govan J.R.W., Harris G.S. Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis. Microbiol Sci 1986; 3:302–308
    [Google Scholar]
  11. Govan J.R.W., Fyfe J.A.M., Jarman J.R. Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina. J Gen Microbiol 1981; 125:217–220
    [Google Scholar]
  12. Grabert E., Wingender J., Winkler U.K. An outer membrane protein characteristic of mucoid strains of Pseudomonas aeruginosa. FEMS Microbiol Lett 1990; 68:83–88
    [Google Scholar]
  13. Guiry M.D., Blunden G. Seaweed Resources in Europe: Uses and Potential 1991 New York: John Wiley;
    [Google Scholar]
  14. Von Heijne G. How signal sequences maintain cleavage specificity. J Mol Biol 1984; 173:243–251
    [Google Scholar]
  15. Hopp T.P., Woods K.R. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 1981; 78:3824–3828
    [Google Scholar]
  16. Larsen B., Haug A. Biosynthesis of alginate Part I. Composition and structure of alginate produced by A vinelandii (Lipman). Carbohjdr Rm 1971; 17:287–296
    [Google Scholar]
  17. Linker A., Jones R.S. A new polysaccharide resembling alginic acid isolated from pseudomonads. J Biol Chem 1966; 241:3845–3851
    [Google Scholar]
  18. Lugtenberg B., Meijers J., Peters R., Van Der Hoek P., Van Alphen L. Electrophoretic resolution of the ‘major outer membrane protein’ of Escherichia coli K12 into four bands. FEBS Lett 1975; 58:254–258
    [Google Scholar]
  19. Mak Y.M., Ho K.K. An improved method for the isolation of chromosomal DNA from various bacteria and cyanobacteria. Nucleic Acids Res 1991; 20:4101–4102
    [Google Scholar]
  20. May T.B., Chakrabarty A.M. Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol 1994; 1:151–156
    [Google Scholar]
  21. Paul C., Rosenbusch J.P. Folding patterns of porin and bacteriorhodopsin. EMBO J 1985; 4:1593–1597
    [Google Scholar]
  22. Poxton I.R., Bell G.T., Barclay G.R. The association in SDS-polyacrylamide gels of lipopolysaccharide and outer membrane proteins of Pseudomonas aeruginosa revealed by monoclonal antibodies and Western blotting. FEMS Microbiol Lett 1985; 21:247–251
    [Google Scholar]
  23. Rehm B.H.A., Grabert G., Hein J., Winkler U.K. Antibody response of rabbits and cystic fibrosis patients to an alginate-specific outer membrane protein of a mucoid strain of Pseudomonas aeruginosa. Microb Pathog 1994a; 16:43–51
    [Google Scholar]
  24. Rehm B.H.A., Boheim G., Tommassen J., Winkler U.K. Overexpression of algE in Escherichia coli\subcellular localization, purification, and ion channel properties. J Bacteriol 1994b; 176:5639–5647
    [Google Scholar]
  25. Sadoff H.L. Encystment and germination of Azotobacter vinelandii. Bacteriol Rev 1975; 39:516–539
    [Google Scholar]
  26. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd edn 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  28. Schirmer T., Keller T.A., Rosenbusch J.P. Structural basis for sugar translocation through maltoporin channels at 3’1 A resolution. Science 1995; 267:512–514
    [Google Scholar]
  29. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature 1975; 254:34–38
    [Google Scholar]
  30. Skjik-Braek G., Martinsen A. Application of some algal polysaccharides in biotechnology. In Seaweed Resources in Europe: Uses and Potential 1991 Edited by Guiry M.D., Blunden G. New York: John Wiley; pp 219–257
    [Google Scholar]
  31. Soon-Shiong P., Feldman E., Nelson R., Heintz R., Yao Q., Yao Z., Zheng T., Merideth N., Skjsk-Braek G., Espevik T., Smidsrod O., Sandford P. Long-term reversal of diabetes by injection of immunoprotected islets. Proc Natl Acad Sci USA 1993; 90:5843–5847
    [Google Scholar]
  32. Struyve M., Moons M., Tommassen J. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 1991; 218:141–148
    [Google Scholar]
  33. Studier F.W., Moffatt B.A. Use of bacteriophage T7 RNA polymerase to direct selective high level expression of cloned genes. J Mol Biol 1986; 189:113–130
    [Google Scholar]
  34. Tabor S., Richardson C.C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 1985; 82:1074–1078
    [Google Scholar]
  35. Terzaghi B.E., Terzaghi E. Azotobacter biology, biochemistry and molecular biology. In Nitrogen Fixation 1986 Edited by Broughton W.J., Puhler A. Oxford: Clarendon Press; 4 pp 127–163
    [Google Scholar]
  36. Tommassen J. Biogenesis and membrane topology of outer membrane proteins in Escherichia coli. In Membrane Biogenesis (NATO ASI series) 1988 Edited by Opden Kamp J.A. Berlin: Springer Verlag; pp 351–373
    [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 76:4350–4354
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-4-873
Loading
/content/journal/micro/10.1099/00221287-142-4-873
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error