1887

Abstract

The mechanism of haem-iron acquisition in is poorly understood. Using haemin-agarose in a batch affinity chromatography method, two haemin-binding proteins of 97 and 50 kDa were isolated from total membranes derived from B16B6 grown under iron-deficient but not under iron-replete conditions. No binding proteins were affinity-purified when total membranes underwent limited proteolysis with trypsin, suggesting a haem-protein interaction. When biotinylated human haemoglobin was used as the affinity ligand, proteins of identical molecular mass were isolated. Detection of haemin-binding proteins in a whole cell binding assay demonstrated a surface-exposed location. Competitive binding studies indicated that this haem-protein interaction was specific, because only haemin or human haemoglobin, but not cytochrome c' protoporphyrin IX, iron-loaded human lactoferrin, iron-loaded human transferrin or Fe(NO3)3, could abrogate binding. The presence of similar haemin-binding proteins in a limited survey of clinical meningococcal strains indicated that the expression of the haemin-binding proteins is not serogroup-specific.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-6-1473
1994-06-01
2021-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/6/mic-140-6-1473.html?itemId=/content/journal/micro/10.1099/00221287-140-6-1473&mimeType=html&fmt=ahah

References

  1. Bramanti T.E., Holt S. C. 1992a; Effect of porphyrins and host iron transport proteins on outer membrane protein expression in Porphyromonas (Bacteroides) gingivalis: identification of a novel 26- kDa hemin-repressible surface protein. Microb Pathog 13:61–73
    [Google Scholar]
  2. Bramanti T.E., Holt S.C. 1992b; Localization of a Porphyromonas gingivalis 26-kilodalton heat-modifiable, hemin-regulated surface protein which translocates across the outer membrane. J Bacterial 174:5827–5839
    [Google Scholar]
  3. Brodeur B. R., La rose Y., Tsang P., Hamael J., Ashton F., Ryan A. 1985; Protection against infection with Neisseria meningitidis group B serotype 2b by passive immunization with serotype- specific monoclonal antibody. Infect Immun 50:510–516
    [Google Scholar]
  4. Brown S. B., Shillock M., Jones P. 1976; Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solutions. Biochem J 153:279–285
    [Google Scholar]
  5. Cornelissen C. N., Biswas G. D., Tsai J., Parachuri D. K., Thompson S. A., Sparling P. F. 1992; Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to Ton B-dependent outer membrane receptors. J Bacterial 174:5788–5797
    [Google Scholar]
  6. Daskaleros P. A., Stoebner J. A., Payne S. M. 1991; Iron uptake in Plesiomonas shigelloides: cloning of the genes for the heme- iron uptake system. Infect Immun 59:2706–2711
    [Google Scholar]
  7. Devoe I. 1982; The meningococcus and mechanisms of pathogenicity. Microbiol Rev 46:162–190
    [Google Scholar]
  8. Dougherty T. J., Asmus A., Tomasz A. 1979; Specificity of DNA uptake in genetic transformation of gonococci. Biochem Biophys Res Commun 86:97–104
    [Google Scholar]
  9. Faur Y. C., Weisburd M. H., Wilson M. E. 1975; Isolation of Neisseria meningitidis from the genitourinary tract and anal canal. J Clin Microbiol 2:178–182
    [Google Scholar]
  10. Gonzalez G. C., Caamano D. L., Schryvers A. B. 1990; Identification and characterization of a porcine-specific transferrin receptor in Actinobacillus pleuropneumoniae. Mol Microbiol 4:1173–1179
    [Google Scholar]
  11. Greenwood B.M. 1984; Selective primary health care: strategies for control of disease in the developing world: XIII. Acute bacterial meningitis. Rev Infect Dis 6:374–389
    [Google Scholar]
  12. Harrison L.H., Broome C.V. 1987; The epidemiology of meningococcal meningitis in the civilian U.S. population. In The Evolution of Meningococcal Disease pp. 27–46 Edited by Vedros N. A. Boca Raton, Florida: CRC Press;
    [Google Scholar]
  13. Helms S. D., Oliver J. D., Travis J. C. 1984; The role of heme compounds and haptoglobin in Vibrio vulnificus pathogenicity. Infect Immun 45:345–349
    [Google Scholar]
  14. Henderson D.P., Payne S. M. 1993; Cloning and characterization of the Vibrio cholerae genes encoding the utilization of iron from haemin and haemoglobin. Mol Microbioll461–469
    [Google Scholar]
  15. Holbein B.E. 1980; Iron-controlled infection with Neisseria meningitidis in mice. Infect Immun 29:886–891
    [Google Scholar]
  16. Holbein B.E. 1981; Enhancement of Neisseria meningitidis infection in mice by the addition of iron bound to transferrin. Infect Immun 34:120–125
    [Google Scholar]
  17. Irwin S. W., Averill N., Cheng C. Y., Schryvers A. B. 1993; Preparation and analysis of isogenic mutants in the transferrin receptor protein genes, tbp 1 and tbp2, from Neisseria meningitidis. Mol Microbiol 8:1125–1133
    [Google Scholar]
  18. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  19. Lee B.C. 1991; Iron sources for Haemophilus ducreyi. J Med Microbiol 34:317–322
    [Google Scholar]
  20. Lee B.C. 1992a; Isolation of heme-binding proteins of Neisseria gonorrhoeae. J Med Microbiol 36:121–127
    [Google Scholar]
  21. Lee B.C. 1992b; Isolation of an outer membrane haemin-binding protein from Haemophilus influenzae type b. Infect Immun 60:810–816
    [Google Scholar]
  22. Lee B.C., Bryan L. E. 1989; Identification and comparative analysis of the lactoferrin and transferrin receptors among clinical isolates of gonococci. J Med Microbiol 28:199–204
    [Google Scholar]
  23. Lee B.C., Hill P. 1992; Identification of an outer membrane haemoglobin-binding protein in Neisseria meningitidis. J Gen Microbiol 138:2647–2656
    [Google Scholar]
  24. Lee B.C., Schryvers A. B. 1988; Specificity of the lactoferrin and transferrin receptors in Neisseria gonorrhoeae. Mol Microbiol 2:827–829
    [Google Scholar]
  25. Legrain M., Jacobs E., Irwin S. W., Schryvers A. B., Quentin- Millet M. J. 1993; Molecular cloning and characterization of Neisseria meningitidis genes encoding the transferrin binding proteins Tbpl and Tbp2. Gene 130:73–80
    [Google Scholar]
  26. Merril C.R. 1990; Silver staining of proteins and DNA. Nature 343:779–780
    [Google Scholar]
  27. Muller-Eberhard U, Nikkila H. 1989; Transport of tetra- pyrroles by proteins. Semin Hematol 26:86–104
    [Google Scholar]
  28. Oakley B. R., Kirsch D. R., Morris N. R. 1980; A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem 105:361–363
    [Google Scholar]
  29. Ochs D. 1983; Protein contaminants of sodium dodecyl sulfate- polyacrylamide gels. Anal Biochem 135:470–474
    [Google Scholar]
  30. Peltola H. 1983; Meningococcal disease: still with us. Rev Infect Dis 5:71–91
    [Google Scholar]
  31. Perry R.D., Brubaker R. R. 1979; Accumulation of iron by Yersiniae. J Bacteriol 137:1290–1298
    [Google Scholar]
  32. Pidcock K. A., Wooten J. A., Daley B. A., Stull T. L. 1988; Iron acquisition in Haemophilus influenzae. Infect Immun 56:721–725
    [Google Scholar]
  33. Scatchard G. 1946; The attraction of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672
    [Google Scholar]
  34. Schlech W. F., Ward J. I., Band J. D., Hightower A., Fraser D. W., Broome C. V. 1985; Bacterial meningitis in the United States, 1978 through 1981. JAMA 253:1749–1754
    [Google Scholar]
  35. Schryvers A.B. 1989; Identification of the transferrin- and lactoferrin-binding proteins in Haemophilus influenzae. J Med Microbiol 29:121–130
    [Google Scholar]
  36. Schryvers A.B., Morris L. J. 1988a; Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol Microbiol 2:281–288
    [Google Scholar]
  37. Schryvers A.B., Morris L. J. 1988b; Identification and characterization of the human lactoferrin-binding protein from Neisseria meningitidis. Infect Immun 56:1144–1149
    [Google Scholar]
  38. Smith A., Ledford B. E. 1988; Expression of the haemopexin- transport system in cultured mouse hepatoma cells. Biochem J 256:941–950
    [Google Scholar]
  39. Spratt B.G. 1988; Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature 332:173–176
    [Google Scholar]
  40. Spratt B. G., Zhang Q-Y., Jones D. M., Hutchison A., Bran-nigan J. A., Dowson C. G. 1989; Recruitment of a penicillin- binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria gonorrhoeae. Proc Nat Acad Sci USA 86:8988–8992
    [Google Scholar]
  41. Spratt B. G., Bowler L. D., Zhang Q.-Y., Zhou J., Maynard Smith J. 1992; Role of interspecies transfer of chromosomal genesin the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol 34:115–125
    [Google Scholar]
  42. Stoebner J.A., Payne S. M. 1988; Iron-regulated haemolysin production and utilization of heme and hemoglobin by Vibrio cbolerae. Infect Irnmm 56:2891–2895
    [Google Scholar]
  43. Stojiljkovic I., Hantke K. 1992; Hemin uptake system of Yersinia enterocolitica: similarities with other Ton B-dependent systems in Gram-negative bacteria. EMBO J 11:4359–4367
    [Google Scholar]
  44. Stull T.L. 1987; Protein sources of heme for Haemophilus influenzae. Infect lmmun 55:148–153
    [Google Scholar]
  45. Tasheva B., Dessev G. 1983; Artifacts in SDS-polyacrylamide gel electrophoresis due to 2-mercaptoethanol. Anal Biochem 129:98–102
    [Google Scholar]
  46. Towbin H., Staehlin T, Si Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Nat Acad Sci USA 76:4350–4354
    [Google Scholar]
  47. Tsutsui K., Mueller G. C. 1982; Affinity chromatography of heme-binding proteins: an improved method for the synthesis of hemin-agarose. Anal Biochem 121:244–250
    [Google Scholar]
  48. Vincent S.H. 1989; Oxidative effects of heme and porphyrins on proteins and lipids. Semin Hematol 26:105–113
    [Google Scholar]
  49. West S.E.H., Sparling P. F. 1987; Aerobactin utilization by Neisseria gonorrhoeae and cloning of a genomic DNA fragment that complements Escherichia coli fhu B mutations. J Bacterial 169:3414–3421
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-6-1473
Loading
/content/journal/micro/10.1099/00221287-140-6-1473
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error