1887

Abstract

The cloning of the and genes and their nucleotide sequences are reported. Analysis of mRNA indicates that and constitute one operon which is transcribed from a sigma A type promoter. The steady state amount of mRNA is increased in cells grown in the presence of glycerol 3-phosphate. The 5′ untranslated leader sequence of mRNA contains an inverted repeat which shows sequence similarity to repeats present in the leader sequences of and transcripts. These repeats seem therefore to be essential control elements for all genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-4-723
1994-04-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/4/mic-140-4-723.html?itemId=/content/journal/micro/10.1099/00221287-140-4-723&mimeType=html&fmt=ahah

References

  1. Amann E., Brosius J., Ptashne M. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 1983; 25:167–178
    [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. Requirements for transformation in Bacillus subtilis. J Bad 1961; 81:741–746
    [Google Scholar]
  3. Arwert F., Venema G. Transformation in Bacillus subtilis. Mol & Gen Genet 1973; 123:185–198
    [Google Scholar]
  4. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. Minipreps of Plasmid DNA. In Current Protocols in Molecular Biology 1987 New York: John Wiley & Sons; 1.6 pp 1.6.4–1.6.5
    [Google Scholar]
  5. Beijer L., Nilsson R.-P., Holmberg C., Rutberg L. The glpP and glpF genes of the glycerol regulon in Bacillus subtilis. J Gen Microbiol 1993; 139:349–359
    [Google Scholar]
  6. Brzoska P., Schweizer H., Argast M., Boos W. Ugp-dependent transport system for sn-glycerol 3-phosphate of Escherichia coli. In Phosphate Metabolism and Cellular Regulation in Microorganisms 1987 Edited by Torriani-Gorini A. Washington, DC: American Society for Microbiology; and others pp 170–177
    [Google Scholar]
  7. Crutz A.-M., Steinmetz M., Aymerich S., Richter R., Le Coq D. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J Baderiol 1990; 172:1043–1050
    [Google Scholar]
  8. Débarbouillé M., Arnaud M., Fouet A., Klier A., Rapoport G. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Baderiol 1990; 172:3966–3973
    [Google Scholar]
  9. Devereux J., Heberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 1984; 12:387–395
    [Google Scholar]
  10. Eiglmeier K., Boos W., Cole S. Nucleotide sequence and transcriptional startpoint of the glpT gene of Escherichia coli: extensive sequence homology of the glycerol-3-phosphate transport protein with components of the hexose-6-phosphate transport system. Mol Microbiol 1987; 1:251–258
    [Google Scholar]
  11. Garen A., Levinthal C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta 1960; 38:470–483
    [Google Scholar]
  12. Gött P., Boos W. The transmembrane topology of the sn-glycerol-3-phosphate permease of Escherichia coli analysed by phoA and lacZ protein fusions. Mol Microbiol 1988; 2:655–663
    [Google Scholar]
  13. Gross C.A., Lonetto M., Losick R. Bacterial sigma factors. In Transcriptional Regulation 1992 Edited by McKnight S.L., Yamamoto K.R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;129–176
    [Google Scholar]
  14. Haima P., Bron S., Venema G. The effect of restriction on shotgun cloning in Bacillus subtilis Marburg. Mol & Gen Genet 1987; 209:335–342
    [Google Scholar]
  15. Holmberg C., Rutberg B. Cloning of the glycerol kinase gene of Bacillus subtilis. FEMS Microbiol Lett 1989; 58:151–156
    [Google Scholar]
  16. Holmberg C., Rutberg B. Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination. Mol Microbiol 1991; 5:2891–2900
    [Google Scholar]
  17. Holmberg C., Rutberg L. An inverted repeat preceding the Bacillus subtilis glpD gene is a conditional terminator of transcription. Mol Microbiol 1992; 6:2931–2938
    [Google Scholar]
  18. Holmberg C., Beijer L., Rutberg B., Rutberg L. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). J Gen Microbiol 1990; 136:2367–2375
    [Google Scholar]
  19. Houman F., Diaz-Torres M.R., Wright A. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell 1990; 62:1153–1163
    [Google Scholar]
  20. Larson T.J. glpT-dependent transport of sn-glycerol 3-phosphate in Escherichia coli K-12. In Phosphate Metabolism and Cellular Regulation in Microorganisms 1987 Edited by Torriani-Gorini A. and others Washington, DC: American Society for Microbiology; pp 164–169
    [Google Scholar]
  21. Lin E.C.C. Dissimilatory pathways for sugars, polyols, and carboxylates. In In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology 1987 Edited by Neidhardt F.C. Washington, DC: American Society for Microbiology; and others 1 pp 244–284
    [Google Scholar]
  22. Lindgren V. Mapping of a genetic locus that affects glycerol-3-phosphate transport in Bacillus subtilis. J Bacteriol 1978; 133:667–670
    [Google Scholar]
  23. Lindgren V., Rutberg L. Glycerol metabolism in Bacillus subtilis. gene-enzyme relationships. J Bacteriol 1974; 119:431–442
    [Google Scholar]
  24. Maloney P., Ambudkar S., Anantharam V., Sonna L., Varadhachary A. Anion-exchange mechanisms in bacteria. Microbiol Rev 1990; 54:1–17
    [Google Scholar]
  25. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol 1970; 53:159–162
    [Google Scholar]
  26. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218
    [Google Scholar]
  27. Nagarajan V. Protein secretion. In Bacillus subtilis and other Gram-positive Bacteria 1993 Edited by Sonenshein A.L. Washington, DC: American Society for Microbiology; and others pp 713–726
    [Google Scholar]
  28. Niaudet B., Goze A., Erlich S.D. Insertional mutagenesis in Bacillus subtilis mechanism and use in gene cloning. Gene 1982; 19:277–284
    [Google Scholar]
  29. Resnekov O., Rutberg L., von Gabain A. Changes in the stability of specific mRNA species in response to growth stage in Bacillus subtilis. Proc Natl Acad Sci USA 1990; 87:8355–8359
    [Google Scholar]
  30. Sala-Trepat J.M., Evans W.C. The meta cleavage of catechol by Azotobacter species. Eur J Biochem 1971; 20:400–413
    [Google Scholar]
  31. Sambrook J., Fritsch E.F., Maniatis T. Preparation of radiolabeled DNA and RNA probes. In Molecular Cloning: A Laboratory Manual 2nd edn 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 10 pp 10.60–10.61
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  33. Schweizer H., Boos W., Larson T.J. Repressor for the sn-glycerol-3-phosphate regulon of Escherichia coli K-12: cloning of the glpR gene and identification of its product. J Bacteriol 1985; 161:563–566
    [Google Scholar]
  34. Steinmetz M. Carbohydrate catabolism: pathways, enzymes, genetic regulation, and evolution. In Bacillus subtilis and other Gram-positive Bacteria 1993 Edited by Sonenshein A.L. and others Washington, DC: American Society for Microbiology; pp 157–170
    [Google Scholar]
  35. Tommassen J., Eiglmeier K., Cole S.T., Overduin P., Larson T.J., Boos W. Characterization of two genes, glpQ and ugpQ, encoding glycerophosphoryl diester phosphodiesterases of Escherichia coli. Mol & Gen Genet 1991; 226:321–327
    [Google Scholar]
  36. Truniger V., Boos W., Sweet G. Molecular analysis of theglpFKX regions of Escherichia coli and Shigella flexneri. J Bacteriol 1992; 174:6981–6991
    [Google Scholar]
  37. Weickert M.J., Chambliss G.H. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci USA 1990; 87:6238–6242
    [Google Scholar]
  38. Young M. Gene amplification in Bacillus subtilis. J Gen Microbiol 1984; 130:1613–1621
    [Google Scholar]
  39. Zukowski M.M., Miller L. Hyperproduction of an intracellular heterologous protein in a sacLP mutant of Bacillus subtilis. Gene 1986; 46:247–255
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-4-723
Loading
/content/journal/micro/10.1099/00221287-140-4-723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error