1887

Abstract

The genes encoding the six pyrimidine biosynthesis enzymes from the thermophile caldolyticus were characterized by cloning and complementation in , and by nucleotide sequence analysis. Nine cistrons are clustered within an 11 kb region of the chromosome, the gene order being: orf1-pyrB-pyrC-pyrAa-pyrAb-orf2-pyrD-pyrF-pyrE. This organization of the cluster is very similar to that of the pyr operon of Different parts of the cluster were cloned in two orientations in the expression shuttle vector pHPS9. Complementation studies in established that expression of the genes was dependent on the vector-borne promoter, suggesting that they are part of an operon, and that the native promoter of the operon had not been cloned. The deduced amino acid sequence of the individual cistrons showed 49 to 78% identity with the corresponding cistrons. Measurements of the aspartate transcarbamylase (), orotidine monophosphate decarboxylase () and orotate phosphoribosyltransferase () levels in cells grown under different conditions indicated that expression of the operon is repressed 7–9-fold by addition of uracil to the growth medium. Based on the nucleotide sequence in the intercistronic region between and a regulatory mechanism involving transcriptional termination and antitermination is proposed to control expression of the operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-3-479
1994-03-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/3/mic-140-3-479.html?itemId=/content/journal/micro/10.1099/00221287-140-3-479&mimeType=html&fmt=ahah

References

  1. Asahi S., Doi M., Tsunemi Y., Akiyame S. Regulation of pyrimidine nucleotide biosynthesis in cytidine deaminase-negative mutants of Bacillus subtilis. Agric Biol Chem (1989); 53:97–102
    [Google Scholar]
  2. Babitzke P., Yanofsky C. Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Proc Natl Acad Sci USA (1993); 90:133–137
    [Google Scholar]
  3. Boylan R.J., Mendelson N.M., Brooks D., Young F.E. Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol (1972); 110:281–290
    [Google Scholar]
  4. Clark D.J., Maaloe O. DNA replication and the cell division cycle in Escherichia coli. J Mol Biol (1967); 23:99–112
    [Google Scholar]
  5. Claus D., Berkley R.C.W. Genus Bacillus. In Sergey's Manual of Systematic Bacteriology (1986) Edited by Sneath P.H.A., Mair N.S., Sharpe M.E., Holt J.G. Baltimore: Williams & Wilkins; vol 2 pp 1105–1136
    [Google Scholar]
  6. De Bartolomeo A., Trotta F., La Rosa F., Saltalamacchia G., Mastrandrea V. Numerical analysis and DNA base composition of some thermophilic Bacillus species. Int J Syst Bacteriol (1991); 41:502–509
    [Google Scholar]
  7. Degryse E., Glansdorff N., Piérard A. A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol (1978); 117:189–196
    [Google Scholar]
  8. Del Sal G., Manfioletti G., Schneider C. The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. BioTechniques (1989); 7:514–519
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res (1984); 12:387–395
    [Google Scholar]
  10. Douthwaite S., Christensen A., Garrett R.A. Higher order structure in the 3'-minor domain of small subunit ribosomal RNAs from a Gram negative bacterium, a Gram positive bacterium and a eukaryote. J Mol Biol (1983); 169:249–279
    [Google Scholar]
  11. Ebbole D.J., Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem (1987); 262:8274–8287
    [Google Scholar]
  12. Eijsink V.G.H., Vriend G., Van der Vinne B., Hazes B., Van den Burg B., Venema G. Effects of changing the interaction between subdomains on the thermostability of Bacillus neutral proteases. Proteins Struct Fund Genet (1992); 14:224–236
    [Google Scholar]
  13. Fahmy F., Flossdorf J., Claus D. The DNA base composition of the type strains of the genus Bacillus. Syst Appl Microbiol (1985); 6:60–65
    [Google Scholar]
  14. Gold L. Posttranscriptional regulatory mechanism in Escherichia coli. Annu Rev Biochem (1988); 57:199–233
    [Google Scholar]
  15. Haima P., van Sinderen D., Schotting H., Bron S., Venema G. Development of a β-galactosidase α-complementation for molecular cloning in Bacillus subtilis. Gene (1990a); 86:63–69
    [Google Scholar]
  16. Haima P., van Sinderen D., Bron S., Venema G. An improved β-galactosidase α-complementation system for molecular cloning in Bacillus subtilis. Gene (1990b); 93:41–47
    [Google Scholar]
  17. Heinen U.J., Heinen W. Characteristics and properties of a caldo-active bacterium producing extracellular enzymes and two related strains. Arch Microbiol (1972); 82:1–23
    [Google Scholar]
  18. Henner D.J., Band L., Flaggs G., Chen E. Nucleotide sequence of the Bacillus subtilis tryptophan operon. Gene (1984); 34:69–177
    [Google Scholar]
  19. Jensen K.F., Neuhard J., Schack L. RNA polymerase involvement in the regulation of expression of Salmonella typhi-murium pyr genes. EMBO J (1982); 1:69–74
    [Google Scholar]
  20. Kagawa Y., Nojima H., Nukiwa N., Ishizuka M., Nakajima T., Yasuhara T., Tanaka T., Oshima T. High guanine plus cytosine content in the third letter of codons of an extreme thermophile. DNA sequence of the isopropylmalate dehydrogenase of Thermus thermophilus. J Biol Chem (1984); 259:2956–2960
    [Google Scholar]
  21. Kimsey H.H., Kaiser D. The orotidine-5'-phosphate decarboxylase gene of Myxococcus xanthus. Comparison to the OMP decarboxylase family. J Biol Chem (1992); 267:819–824
    [Google Scholar]
  22. Kuroda M.I., Henner D., Yanofsky C. cis- Acting sites in the transcript of the Bacillus subtilis trp operon regulate expression of the operon. J Bacteriol (1988); 170:3080–3088
    [Google Scholar]
  23. Lemer C.G., Stephenson B.T., Switzer R.L. Structure of Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster. J Bacteriol (1987); 169:2202–2206
    [Google Scholar]
  24. McLaughlin J.R., Murray C.L., Rabinowitz J.C. Unique features in the ribosome binding site sequence of the Gram-positive Staphylococcus aureus β-Lactamase gene. J Biol Chem (1981); 256:1283–11291
    [Google Scholar]
  25. Neuhard J., Nygaard P. Purines and pyrimidines. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (1987) Edited by Neidhardt F.C., Ingraham J.L., Low K.B., Magasanik B., Schaechter M., Umbarger H.E. Washington, DC: American Society for Microbiology; pp 445–473
    [Google Scholar]
  26. Oppenheim D.S., Yanofsky C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics (1980); 95:785–795
    [Google Scholar]
  27. Paulus T.J., McGarry T.J., Shekelle P.G., Rosenzweig S., Switzer R.L. Coordinate synthesis of the enzymes of pyrimidine biosynthesis in Bacillus subtilis. J Bacteriol (1982); 149:775–778
    [Google Scholar]
  28. Pearson W.R., Lipman D.J. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA (1988); 85:2444–2448
    [Google Scholar]
  29. Poulsen P., Jensen K.F., Valentin-Hansen P., Carlsson P., Lundberg L.G. Nucleotide sequence of the Escherichia coli pyrE gene and of the DNA in front of the protein-coding region. Eur J Biochem (1983); 135:223–229
    [Google Scholar]
  30. Poulsen P., Bonekamp F., Jensen K.F. Structure of the Escherichia coli pyrE operon and control of pyrE expression by a UTP modulated intercistronic attenuation. EMBO J (1984); 3:1783–1790
    [Google Scholar]
  31. Prescott L.M., Jones M.E. Modified methods for the determination of carbamyl aspartate. Anal Biochem (1969); 32:408–419
    [Google Scholar]
  32. Quinn C.L., Stephenson B.T., Switzer R.L. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J Biol Chem (1991); 266:9113–9127
    [Google Scholar]
  33. Roland K.L., Powell F.E., Turnbough C.L. Role of translation and attenution in the control ofpyrBI operon expression in Escherichia coli K-12. J Bacteriol (1985); 163:991–999
    [Google Scholar]
  34. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual (1989) Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA (1977); 74:5463–5467
    [Google Scholar]
  36. Schlatter D., Kriech O., Suter F., Zuber H. The primary structure of the psychrophilic lactate dehydrogenase from Bacillus psychrosaccharolyticus. Biol Chem Hoppe-Seyler (1987); 368:1435–1446
    [Google Scholar]
  37. Sharp R.J., Bown K.J., Atkinson A. Phenotype and genomic characterization of some thermophilic species of Bacillus. J Gen Microbiol (1980); 117:201–210
    [Google Scholar]
  38. Spizizen J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA (1958); 44:1072–1078
    [Google Scholar]
  39. Sørensen K.I., Neuhard J. Dual transcriptional initiation sites from the pyrC promoter control expression of the gene in Salmonella typhimurium. Mol & Gen Genet (1991); 225:249–256
    [Google Scholar]
  40. Sorensen K.I., Baker K.E., Kelln R.A., Neuhard J. Nucleotide pool sensitive selection of the transcriptional start site. J Bacterial (1993); 175:4137–4144
    [Google Scholar]
  41. Tuerk C., Gauss P., Thermes C., Groebe D.R., Gayle M., Guild N., Stormo G., D'Aubenton-Carafa Y., Uhlenbeck O.G., Tinoco I., Brody E.N., Gold L. CUUCGG hairpins: extraordinarily stable RNA secondary structures associated with various biochemical processes. Proc Natl Acad Sci USA (1988); 85:1364–1368
    [Google Scholar]
  42. Wilson H.R., Archer G.D., Liu J., Turn bough G.L. Translational control of pyrC expression mediated by nucleotide-sensitive selection of transcriptional start sites in Escherichia coli. J Bacteriol (1992); 174:514–524
    [Google Scholar]
  43. Van den Burg B., Enequist H.G., Van der Haar M.E., Eijsink V.G.H., Stulp B.K., Venema G. A highly thermostable neutral protease from Bacillus caldolyticus. Cloning and expression of the gene in Bacillus subtilis and characterization of the gene product. J Bacteriol (1991); 173:4107–4115
    [Google Scholar]
  44. Zalkin H., Ebbole D.J. Organization and regulation of genes encoding biosynthetic enzymes in Bacillus subtilis. J Biol Chem (1988); 263:1595–1598
    [Google Scholar]
  45. Zuber H. Temperature adaptation of lactate dehydrogenase. Structural, functional and genetic aspects. Biophys Chem (1988); 29:171–179
    [Google Scholar]
  46. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res (1981); 9:133–148
    [Google Scholar]
  47. Zülli F., Weber H., Zuber H. Nucleotide sequences of lactate dehydrogenase genes from the thermophilic bacteria Bacillus stearothermophilus B. caldolyticus, and B. caldotenax. Biol Chem Hoppe-Seyler (1987); 368:1167–1177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-3-479
Loading
/content/journal/micro/10.1099/00221287-140-3-479
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error