1887

Abstract

An agar plating technique was developed in which the activation of expressior of a gene fusion was used to isolate the genes from a gene library. An mutant containing the fusion was transformed and plated on a low-nitrogen medium so that on flooding with ONPG, the production of yellow colonies indicated the presence of the cloned genes. A 4.47 kb region from the chromosome was sequenced. Analysis of the sequence revealed that the and genes were closely linked to a third ORF of unknown function. Analysis of the 900 bp region upstream of the genes and Southern hybridization experiments confirmed that in ATCC 33020, the and genes are unlinked. Expression of the fusion in was activated in the presence of the genes and regulated by nitrogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-10-2543
1994-10-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/10/mic-140-10-2543.html?itemId=/content/journal/micro/10.1099/00221287-140-10-2543&mimeType=html&fmt=ahah

References

  1. Ames Ferro-Luzzi G., Nikaido K. Nitrogen regulation in Salmonella typhimurium. Identification of an ntrC protein binding site and definition of a consensus binding sequence. EMBO J 1985; 4:539–547
    [Google Scholar]
  2. van Aswegen P.C., Godfrey M.W., Miller D.M., Haines A.K. Developments and innovations in Bacteriol oxidation of refractory ores. Miner Metallurg Processing 1991; 8:188–192
    [Google Scholar]
  3. Backman K., Chen Y.-M., Magasanik B. Physical and genetic characterization of the glnA—glnG region of the Escherichia coli chromosome. Proc Natl Acad Sci USA 1981; 78:3743–3747
    [Google Scholar]
  4. Barros M.E., Rawlings D.E., Woods D.R. Cloning and expression of the Thiobacillus ferrooxidans glutamine synthetase gene in Escherichia coli. J Bacteriol 1985; 164:1386–1389
    [Google Scholar]
  5. Benyon J., Cannon W., Buchanan-Wollaston V., Cannon F. The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell 1983; 34:665–671
    [Google Scholar]
  6. Berger D.K., Woods D.R., Rawlings D.E. Complementation of Escherichia coli σ54(NtrA)-dependent formate hydro-genlyase activity by a cloned Thiobacillus ferrooxidans ntrA gene. J Bacteriol 1990; 172:4399–4406
    [Google Scholar]
  7. Buck M., Cannon W. Mutations in the RNA polymerase recognition sequence of the Klebsiella pneumoniae nifH promoter permitting transcriptional activation in the absence of NifA binding to upstream activator sequences. Nucleic Acids Res 1989; 17:2597–2612
    [Google Scholar]
  8. Buck M., Cannon W. Specific binding of the transcription factor sigma-54 to promoter DNA. Nature 1992; 358:422–424
    [Google Scholar]
  9. Buikema W.J., Szeto W.W., Lem ley P.V., Orme-Johnson W.H., Ausubel F.M. Nitrogen fixation specific regulatory genes of Klebsiella pneumoniae and Rhfobium meliloti share homology with the general nitrogen regulatory gene ntrC of Klebsiella pneumoniae. Nucleic Acids Res 1985; 13:4539–4555
    [Google Scholar]
  10. De Bruijn F.J., Ausubel F.M. The cloning and transposon T n5 mutagenesis of the gin A region of Klebsiella pneumoniae: identification ofglnR, a gene involved in the regulation of the nif and hut operons. Mol & Gen Genetics 1981; 183:289–297
    [Google Scholar]
  11. Drummond M.H., Clements J., Merrick M., Dixon R. Positive control and autogenous regulation of the nifLA promoter in Klebsiella pneumoniae. Nature 1983; 301:302–307
    [Google Scholar]
  12. Drummond M.H., Contreras A., Mitchenall L.A. The function of isolated domains and chimeric proteins constructed from the transcriptional activators NifA and NtrC of Klebsiella pneumoniae. Mol Microbiol 1990; 4:29–37
    [Google Scholar]
  13. Hohn B., Collins J. A small cosmid for efficient cloning of large DNA fragments. Gene 1980; 11:291–298
    [Google Scholar]
  14. Jones R., Haselkorn R. The DNA sequence of the Rhodobacter capsulatus ntrA, ntrB and ntrC gene analogues for nitrogen fixation. Mol & Gen Genet 1989; 215:507–516
    [Google Scholar]
  15. Keener J., Kustu S. Protein kinase and phosphatase activities of nitrogen regulator proteins NtrB and NtrC of enteric bacteria: roles of the conserved amino terminal domain of NtrC. Proc Natl Acad Sci USA 1988; 85:4976–4980
    [Google Scholar]
  16. Lane D.J., Harrison A.P. Jr, Stahl D., Pace B., Giovannoni S.J., Olson G.J., Pace N.R. Evolutionary relationships among sulfur- and iron-oxidizing bacteria. J Bacteriol 1991; 174:269–278
    [Google Scholar]
  17. Liang Y.Y., Arsene F., Elmerich C. Characterization of the ntrBC genes of A^ospirillum brasilense Sp7: their involvement in the regulation of nitrogenase synthesis and activity. Mol & Gen Genet 1993; 240:188–196
    [Google Scholar]
  18. Lundgren D.G., Silver M. Ore leaching by bacteria. Annu Rev Microbiol 1980; 34:263–283
    [Google Scholar]
  19. Maharaj R., Rumbak E., Jones W.A., Robb S.M., Robb F.T., Woods D.R. Nucleotide sequence of the Vibrio alginolyticus gin A region. Arch Microbiol 1989; 152:542–549
    [Google Scholar]
  20. MacFarlane S.A., Merrick M. The nucleotide sequence of the nitrogen regulation gene ntrB and the glnA-ntrBC intergenic region of Klebsiella pneumoniae. Nucleic Acids Res 1985; 13:7591–7606
    [Google Scholar]
  21. Merrick M. Nitrogen control of the nif regulon in Klebsiella pneumoniae-, involvement of the ntrA gene and analogies between ntrC and nif A. EMBO J 1983; 2:39–44
    [Google Scholar]
  22. Miranda-Rios J., Sanchez-Pescador R., Urdea M., Covarrubias A.A. The complete nucleotide sequence of the glnALG operon of Escherichia coli K12. Nucleic Acids Res 1987; 15:2757–2770
    [Google Scholar]
  23. Ninfa A.J., Magasanik B. Covalent modification of the glnG product, NRPby the glnE product, NRII, regulates transcription of the gin AEG operon in Escherichia coli. Proc Natl Acad Sci USA 1986; 83:5909–5913
    [Google Scholar]
  24. Nixon T.B., Ronson C.W., Ausubel F.M. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen regulatory genes ntrB and ntrC. Proc Natl Acad Sci USA 1986; 83:7850–7854
    [Google Scholar]
  25. Ow D., Ausubel F.M. Regulation of nitrogen metabolism genes by the nif A gene product in Klebsiella pneumoniae. Nature 1983; 301:307 –313
    [Google Scholar]
  26. Ow D., Xiong Y., Gu Q., Shen S.C. Mutational analysis of the Klebsiella pneumoniae nitrogenase promoters: sequences essential for positive control by nifA and ntrC (glnG) products. J Bacteriol 1985; 161:868–874
    [Google Scholar]
  27. Pahel G., Tyler B. A new glnA-linked regulatory gene for glutamine synthetase in Escherichia coli. Proc Natl Acad Sci USA 1979; 76:4544–4548
    [Google Scholar]
  28. Popham D.L., Szeto D., Keener J., Kustu S. Function of a Bacteriol activator protein that binds to transcriptional enhancers. Science 1989; 243:629–635
    [Google Scholar]
  29. Pretorius I.-M., Rawlings D.E., O'Neill E.G., Jones W.A., Kirby R., Woods D.R. Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans. J Bacteriol 1987; 169:367–370
    [Google Scholar]
  30. Rawlings D.E. Sequence and structural analysis of the α- and β-dinitrogenase subunits of Thiobacillus ferrooxidans. Gene 1988; 69:337–343
    [Google Scholar]
  31. Rawlings D.E., Jones W.A., O'Neill E.G., Woods D.R. Nucleotide sequence of the glutamine synthetase gene and its controlling region from the acidophilic autotroph Thiobacillus ferrooxidans. Gene 1987; 53:211–217
    [Google Scholar]
  32. Rawlings D.E., Woods D.R., Mjoli N.P. The cloning and structure of genes from the autotrophic biomining bacterium Thiobacillus ferrooxidans. /i In Advances in Gene Technology 1991 Edited by Greenaway P.J. ondon: JAI Press; 2 pp 215–237
    [Google Scholar]
  33. Ray L., Claveriemartin F., Weglenski P., Magasanik B. Role of the promoter in activation of transcription by nitrogen regulator I phosphate in Escherichia coli. J Bacteriol 1990; 172:818–823
    [Google Scholar]
  34. Reitzer L.J., Magasanik B. Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci USA 1985; 82:1979–1983
    [Google Scholar]
  35. Reitzer L.J., Movsas B., Magasanik B. Activation of glnA transcription by nitrogen regulator I (NRj)-phosphate in Escherichia coli: evidence for a long range physical interaction between NRt-phosphate and RNA polymerase. J Bacteriol 1989; 171:5512–5522
    [Google Scholar]
  36. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning : a Eahoratorj Manual 1989, 2nd edn. Cold Spring Harbor, NY : Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sanders D.A., Gillece-Castro B.L., Burlinghame A.L., Koshland D.E. Jr Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription. J Bacteriol 1992; 174:5117–5122
    [Google Scholar]
  38. Steglitz-Mörsdorf U., Mörsdorf G., Kaltwasser H. Cloning, heterologous expression, and sequencing of the Proteus vulgaris glnAntrBC operon and implications of nitrogen control on heterologous urease expression. FEMS Microbiol Lett 1993; 106:57–164
    [Google Scholar]
  39. Sundaresan V., Jones J.D.G., Ow D.W., Ausubel F.M. Klebsiella pneumoniae nifA product activates the Rhizobium meliloti nitrogenase promoter. Nature 1983; 301:728–732
    [Google Scholar]
  40. Szeto W.W., Nixon B.T., Ronson C.W., Ausubel F.M. Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J Bacteriol 1987; 169:1423–1432
    [Google Scholar]
  41. Toukdarian A., Kennedy C. Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. EMBO J 1986; 5:399–407
    [Google Scholar]
  42. Tuli R., Fisher R., Haselkorn R. The ntr genes of Escherichia coli activate the hut and nif opérons of Klebsiella pneumoniae. Gene 1982; 19:109–116
    [Google Scholar]
  43. Wardhan H., McPherson M.J., Sastry G.R.K. Indentification, cloning, and sequence analysis of the nitrogen regulation gene ntrC of Agrobacterium tumefaciens C58. Mol Plant- Microbe Interact 1989; 2:241–248
    [Google Scholar]
  44. Woese C.R. Bacteriol evolution. Microbiol Rev 1987; 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-10-2543
Loading
/content/journal/micro/10.1099/00221287-140-10-2543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error