1887

Abstract

SUMMARY: Molybdenum uptake was examined in K12 using the radionuclide Mo. The molybdenum uptake system was characterized in an unusual strain, which appeared to be normal in uptake of the MoO% ion but altered in subsequent molybdenum processing. As a consequence, molybdenum could be chased from cells in the strain, while it was irreversibly assimilated in the wild-type strain. Molybdenum uptake showed a biphasic kinetic curve, with a very rapid binding followed by a slow uptake phase. The uptake appeared to involve an active transport system. Molybdenum, probably in the form of molybdate, accumulated by a factor of about 30 in the cells. An energy source was necessary and uptake was inhibited by arsenate, but not by CCCP (carbonyl cyanide -chlorophenylhydrazone). The uptake system saturated with a K of 2·5·2·7 × 10 M. Uptake seemed to depend on a periplasmic binding protein, since cold shock treatment and arsenate abolished uptake. A molybdate binding protein activity was detected in the periplasmic fluid with a K of 9 nM. Sulphate inhibited uptake and the uptake activity was pH dependent, with an apparent p of 6·7. These results imply that molybdate transport belongs to the family of energy-dependent periplasmic binding protein systems. An explanation for the peculiar behaviour of the strain used in this work is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-8-1869
1993-08-01
2021-04-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/8/mic-139-8-1869.html?itemId=/content/journal/micro/10.1099/00221287-139-8-1869&mimeType=html&fmt=ahah

References

  1. ADHYA S., CLEARY P., CAMPBELL A. 1968; A detection analysis of prophage lambda and adjacent genetic regions.. Proceedings of the National Academy of Sciences of the United States of America 61956–962
    [Google Scholar]
  2. AMES G. F.-L. 1986; Bacterial periplasmic transport systems: structure, mechanism and evolution.. Annual Review of Biochemistry 55:397–425
    [Google Scholar]
  3. AMES G. F.-L., MIMURA C. S., SHYAMALA V. 1990; Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases.. FEMS Microbiology Reviews 75:429–446
    [Google Scholar]
  4. BERGER E. A. 1973; Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli.. Proceedings of the National Academy of Sciences of the United States of America 701514–1518
    [Google Scholar]
  5. BERGER E. A., HEPPEL L. A. 1974; Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli.. Journal of Biological Chemistry 249:7747–7755
    [Google Scholar]
  6. BRADBEER C., WOODROW M. L. 1976; Transport of vitamin B12 in Escherichai coli: energy dependence.. Journal of Bacteriology 128:99–104
    [Google Scholar]
  7. DEL CAMPILLO-CAMPBELL A., CAMPBELL A. 1982; Molybdenum cofactor requirement for biotin sulfoxide reduction in Escherichia coli.. Journal of Bacteriology 149:469–478
    [Google Scholar]
  8. CASSE F. 1970; Mapping of the gene chlB controlling membrane bound nitrate reductase and formic hydrogen-lyase activities in Escherichia coli K-12.. Biochemical and Biophysical Research Communications 39:429–436
    [Google Scholar]
  9. CUPPOLETTI J., SEGEL I. H. 1975; Kinetics of sulfate transport by Penicillium notatum. Interactions of sulfate, protons, and calcium.. Biochemistry 14:4712–4718
    [Google Scholar]
  10. DAGERT M., PUIG J. 1976; Mapeo del gen chlE en Escherichia coli K-12.. Acta Cientifica Venezolana 27:85–87
    [Google Scholar]
  11. DIGIROLAMO P. M., BRADBEER C. 1971; Transport of vitamin B12 in Escherichia coli.. Journal of Bacteriology 106:745–750
    [Google Scholar]
  12. DUBOURDIEU M., ANDRADE E., PUIG J. 1976; Molybdenum and chlorate resistant mutants in Escherichia coli K-12.. Biochemical and Biophysical Research Communications 70:766–773
    [Google Scholar]
  13. EADY R. R., POSTGATE J. R. 1974; Nitrogenase.. Nature, London 249:805–810
    [Google Scholar]
  14. ELLIOT B. B., MORTENSON J. R. 1975; Transport of molybdate byClostridium pasteurianum.. Journal of Bacteriology 124:1295–1301
    [Google Scholar]
  15. ELLIOT B. B., MORTENSON J. R. 1976; Regulation of molybdate transport by Clostridium pasteurianum.. Journal of Bacteriology 127:770–779
    [Google Scholar]
  16. ENOCH H. G., LESTER R. L. 1975; The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli.. Journal of Biological Chemistry 250:6693–6705
    [Google Scholar]
  17. FORGET P. 1974; The bacterial nitrate reductase: solubilization, purification and properties of the enzyme A of Escherichia coli K-12.. European Journal of Biochemistry 42:325–332
    [Google Scholar]
  18. GIORDANO G., GRILLET L., POMMIER J., TERRIERE C., HADDOCK B. A., AZOULAY E. 1980; Precursor forms of the subunits of nitrate reductase in chlA and chlB mutants of Escherichia coli K-12.. European Journal of Biochemistry 105:297–306
    [Google Scholar]
  19. GLASER J. H., DEMOSS J. A. 1971; Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of Escherichia coli.. Journal of Bacteriology 108:854–860
    [Google Scholar]
  20. GLASER J. H., DEMOSS J. A. 1972; Comparison of nitrate reductase mutants of Escherichia coli selected by alternative procedures.. Molecular and General Genetics 116:1–10
    [Google Scholar]
  21. IIDA K., TANIGUCHI S. 1959; Particulate electron transport system to nitrate and its solubilization.. Journal of Biochemistry 46:1041–1055
    [Google Scholar]
  22. HINTON S. M., DEAN D. 1990; Biogenesis of molybdenum cofactors.. Critical Reviews in Microbiology 17:169–188
    [Google Scholar]
  23. JOHANN S., HINTON S. M. 1987; Cloning and nucleotide sequence of the chlD locus.. Journal of Bacteriology 169:1911–1916
    [Google Scholar]
  24. JOHNSON M. E., RAJAGOPALAN K. V. 1987a; In vitro system for molybdopterin biosynthesis.. Journal of Bacteriology 169:110–116
    [Google Scholar]
  25. JOHNSON M. E., RAJAGOPALAN K. V. 1987b; Involvement of chlA, E, M and N loci in Escherichia coli molybdopterin biosynthesis.. Journal of Bacteriology 169:117–125
    [Google Scholar]
  26. JOHNSON J. L., HAINLINE B. E., RAJAGOPALAN K. V. 1980; Characterization of the molybdenum cofactor of sulfite oxidase, xanthine oxidase and nitrate reductase.. Journal of Biological Chemistry 255:1783–1786
    [Google Scholar]
  27. JOHNSON J. L., HAINLINE B. E., RAJAGOPALAN K. V., ARISON B. H. 1984; The pterin component of the molybdenum cofactor: structural characterization of two fluorescent derivatives.. Journal of Biological Chemistry 259:5414–5422
    [Google Scholar]
  28. KADNER R. J., BASSFORD P. J. JR 1978; The role of the outer membrane in active transport.. In: Bacterial Transport pp. 413–462 Edited by Rosen B. R. New York: Marcel Dekker;
    [Google Scholar]
  29. KEPES A. 1978; La permease à lactose.. In Aspects Moleculaires des Fonctions Membranaires pp. 115–149 Edited by Kepes A. Paris; Masson:
    [Google Scholar]
  30. KLEIN W. L., BOYER P. D. 1972; Energization of active transport by Escherichia coli.. Journal of Biological Chemistry 247:7257–7265
    [Google Scholar]
  31. LEE J. H., WENDT J. C., SHANMUGAM K. T. 1990; Identification of a new gene, molR essential for utilization of molybdate by Escherichia coli.. Journal of Bacteriology 172:2079–2087
    [Google Scholar]
  32. LINDBLOW-KULL C., KULL F. J., SHRIFT A. 1985; Single transporter for sulfate, selenate and selenite in Escherichia coli K-12.. Journal of Bacteriology 163:1267–1269
    [Google Scholar]
  33. LUND K., DEMOSS J. A. 1976; Association-dissociation behavior and subunit structure of heat-solubilized nitrate reductase from Escherichia coli.. Journal of Biological Chemistry 251:2207–2216
    [Google Scholar]
  34. MACGREGOR C. H., SCHNAITMAN C. A. 1973; Reconstitution of nitrate reductase activity and formation of membrane particles from cytoplasmic extracts of chlorate-resistant mutants of Escherichia coli.. Journal of Bacteriology 114:1164–1176
    [Google Scholar]
  35. MILLER J. B., AMY N. K. 1983; Molybdenum cofactor in chlorate- resistant and nitrate reductase deficient insertion mutants of Escherichia coli.. Journal of Bacteriology 155:793–801
    [Google Scholar]
  36. MILLER J. B., SCOTT D. J., AMY N. K. 1987; Molybdenum-sensitive transcriptional regulation of the chlD locus of Escherichia coli.. Journal of Bacteriology 169:1853–1860
    [Google Scholar]
  37. NEU H. C., HEPPEL L. A. 1965; The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts.. Journal of Biological Chemistry 240:3685–3692
    [Google Scholar]
  38. PARDEE A. B., PRESTIDGE L. S., WHIPPLE M. B., DREIFUSS J. 1966; A binding site for sulfate and its relation to sulfate transport in Salmonella typhimurium.. Journal of Biological Chemistry 241:3962–3969
    [Google Scholar]
  39. PICHINOTY F. 1964; A propos des nitrate-reductases d’une bactérie dénitrifiante.. Biochimica et Biophysica Acta 89:378–381
    [Google Scholar]
  40. PIENKOS P. T., BRILL W. J. 1981; Molybdenum accumulation and storage in Klebsiella pneumoniae and Azotobacter vinelandii.. Journal of Bacteriology 145:743–751
    [Google Scholar]
  41. POPE M. T., STILL E. R., WILLIAMS R. J. P. 1980; A comparison between the chemistry and biochemistry of molybdenum and related elements.. In Molybdenum and Molybdenum-containing Enzymes pp. 1–4 Edited by Coughlan M. Oxford : Pergamon Press;
    [Google Scholar]
  42. PUIG J., AZOULAY E. 1967; Étude génétique et biochimique des mutants résistants au C1O3 .. Comptes Rendus de l’ Academie des Sciences, Paris 264:1916–1918
    [Google Scholar]
  43. RUIZ-HERRERA J., DEMOSS J. A. 1969; Nitrate reductase complex of Escherichia coli K-12: participation of specific formate de-hydrogenase and cytochrome bx components in nitrate reduction.. Journal of Bacteriology 99:720–729
    [Google Scholar]
  44. SANCHEZ J. A., DUBOURDIEU M., CHIPPAUX M. 1979; Localization and characterization of cytochromes from membrane vesicles of Escherichia coli K-12 grown in anaerobiosis with nitrate.. Biochimica et Biophysica Acta 547:198–210
    [Google Scholar]
  45. SCOTT D., AMY N. K. 1989; Molybdenum accumulation in chlD mutants of Escherichia coli.. Journal of Bacteriology 171:1284–1287
    [Google Scholar]
  46. SEDMAK J. J., GROSBERG S. E. 1977; A rapid, sensitive and versatile assay for protein using Coomassie Brilliant Blue G250.. Analytical Biochemistry 19:544–546
    [Google Scholar]
  47. SHAH V. K., BRILL W. J. 1977; Isolation of an iron-molybdenum cofactor from nitrogenase.. Proceedings of the National Academy of Sciences of the United States of America 743249–3253
    [Google Scholar]
  48. SPERL G. T., DEMOSS J. A. 1975; chlD gene function in molybdate activation of nitrate reductase.. Journal of Bacteriology 122:1230–1238
    [Google Scholar]
  49. STEWART V. 1982; Requirement for Fnr and NarL functions for nitrate reductase expression in Escherichia coli.. Journal of Bac-teriology 151:1320–1325
    [Google Scholar]
  50. STEWART V., MACGREGOR C. H. 1982; Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE and chlG loci.. Journal of Bacteriology 151:788–789
    [Google Scholar]
  51. TWEEDIE J. V., SEGEL I. H. 1970; Specificity of transport processes for sulfur, selenium and molybdenum anions by filamentous fungi.. Biochimica et Biophysica Acta 196:95–106
    [Google Scholar]
  52. VENABLES W. A., GUEST J. R. 1968; Transduction of nitrate reductase loci of Escherichia coli by phages PI and lambda.. Molecular and General Genetics 103:127–140
    [Google Scholar]
  53. YOSHI A. K., AHMED S., AMES G. F.-L. 1989; Energy coupling in bacterial periplasmic transport systems.. Journal of Biological Chemistry 264:2126–1233
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-8-1869
Loading
/content/journal/micro/10.1099/00221287-139-8-1869
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error