1887

Abstract

Summary: The 16S rRNA gene of was amplified by polymerase chain reaction and sequenced by direct double-stranded sequencing. The phylogenetic analysis placed in the -group of the Proteobacteria, with 90.0% similarity to and 88.6% to The published phenotypic characteristics of were compiled and supplemented with growth experiments using ferrous iron, thiosulphate and sulphide as electron donor, and nitrate as nitrogen source. is a Gram-negative, curved bacterium with one polar fiagellum. It grows auto- and mixotrophically with CO glucose, fructose and sucrose as carbon sources, ferrous iron as an electron donor and ammonium or nitrate as nitrogen sources. Two specific oligonucleotide probes are suggested. An iron-oxidizing bacterium without stalk-forming ability, but with the same growth pattern as was identified as by comparison of highly variable parts of the 16S rRNA gene. This indicates that the stalk is not essential for growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-7-1531
1993-07-01
2021-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/7/mic-139-7-1531.html?itemId=/content/journal/micro/10.1099/00221287-139-7-1531&mimeType=html&fmt=ahah

References

  1. Amann R.I., Krumholz L., Stahl D.A. 1990; Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology.. Journal of Bacteriology 172:762–770
    [Google Scholar]
  2. Balashova V.V. 1967; Structure of the ̒stalk̓ fibres in a laboratory culture of Gallionella ferruginea.. Microbiology USSR 36:1050–1053
    [Google Scholar]
  3. Brosius J., Palmer M.L., Kennedy P.J., Noller H.F. 1978; Complete nucleotide sequence of a ribosomal RNA gene from Escherichia coli.. Proceedings of the National Academy of Sciences of the United States of America 75:4801–4805
    [Google Scholar]
  4. Cholodny N. 1924; Zur morphologie der Eisenbakterien: Gallionellaund Spirophyllum.. Berichte der Deutschen Botanische Gesellschaft 42:35–44
    [Google Scholar]
  5. Delong E.F., Shah J. 1990; Fluorescent ribosomal RNA probes for clinical application: a research review.. Diagnostic and Clinical Testing 28:41–44
    [Google Scholar]
  6. Delong E.F., Wickham G.S., Pace N.R. 1989; Phylogenetic strains: ribosomal RNA-based probes for the identification of single cells.. Science 243:1360–1363
    [Google Scholar]
  7. Ehrenberg C.G. 1836; Vorläufige Mittheilung über das wirkliche Vorkommen fossiler Infusorien und ihre grosse Verbreitung.. Annalen der Physik 38:213–227
    [Google Scholar]
  8. Giovannoni S. 1991; The polymerase chain reaction.. In Nucleic Acid Techniques in Bacterial Systematics pp. 177–203, Edited by. Stackebrandt E., Goodfellow M. Chichester:: John Wiley & Sons.;
    [Google Scholar]
  9. Hallbeck L., Pedersen K. 1990; Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea.. Journal of General Microbiology 136:1675–1680
    [Google Scholar]
  10. Hallbeck L., Pedersen K. 1991; Autotrophic and mixotrophic growth of Gallionella ferruginea.. Journal of General Microbiology 137:2657–2661
    [Google Scholar]
  11. Hanert H.H. 1975; Entwicklung, Physiologie und Ökologie des Eisenbakteriums Gallionella ferruginea Ehrenberg -Beitrage zu einer Monographic.. Habilitationsschrift Technischer Universität Braunschweig.
    [Google Scholar]
  12. Hanert H.H. 1981; The genus Gallionella.. In The Prokaryotes. A Handbook in Habitats, Isolation and Identification of Bacteria pp. 509–515, Edited by. Starr M. P., Trüper H.G., Balows A., Schlegel H.G. Berlin:: Springer.;
    [Google Scholar]
  13. Hanert H.H. 1989; Budding and/or appendaged bacteria.. In Bergeys̛s Manual of Systematic Bacteriology pp. 1974–1979, Edited by. Staley J.T., Bryant M.P., Pfennig N., Holt J.G. Baltimore:: Williams & Wilkins.;
    [Google Scholar]
  14. Hicks R.E., Amann R.I., Stahl D.A. 1992; Dual staining of natural bacterioplankton with 4′,6-diamidino-2-phenylindole and fluorescent olignucleotide probes targeting kingdom-level 16S rRNA sequences.. Applied and Environmental Microbiology 58:2158–2163
    [Google Scholar]
  15. HOBBIE J.E., Daley R.J., Jasper S. 1977; Use of nuclepore filter for counting bacteria by fluorescence microscopy.. Applied and Environmental Microbiology 33:1225–1228
    [Google Scholar]
  16. JØrgensen B.B. 1989; Biogeochemistry of chemoautotrophic bacteria.. In Autotrophic Bacteria pp. 193–218, Edited by. Schlegel H.G., Bowien B. Berlin:: Springer-Verlag.;
    [Google Scholar]
  17. Kucera S., Wolfe R.S. 1957; A selective enrichment method for Gallionella ferruginea.. Journal of Bacteriology 74:344–349
    [Google Scholar]
  18. Kuenen J.G., Tuovinen O.H. 1981; The Genera Thiobacillus and Thiomicrospira.. In The Prokaryotes. A Handbook in Habitats, Isolation and Identification of Bacteria pp. 1023–1036, Edited by. Starr M.P., Stolp H., Trüper H.G., Balows A., Schlegel H.G. Berlin:: Springer-Verlag.;
    [Google Scholar]
  19. Lane D.J. 1991; 16S/23S rRNA sequencing.. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175, Edited by. Stackebrandt E., Goodfellow M. Chichester:: John Wiley & Sons.;
    [Google Scholar]
  20. Lane D.J., Harrison A.P. Jr Stahl D., Pace B., Giovannoni S.J., Olsen G., Pace N.R. 1992; Evolutionary relationships among sulfur- and iron-oxidizing eubacteria.. Journal of Bacteriology 147:269–278
    [Google Scholar]
  21. LÜtters-Czekalla S. 1990; Lithoautotrophic growth of the iron bacterium Gallionella ferruginea with thiosulfate or sulfide as energy source.. Archives of Microbiology 154:417–421
    [Google Scholar]
  22. LÜtters S., Hanert H. 1989; The ultrastructure of chemolithotrophic Gallionella ferruginea and Thiobacillus ferrooxidans as revealed by chemical fixation and freeze-etching.. Archives of Microbiology 151:245–251
    [Google Scholar]
  23. Marmur J.A. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms.. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  24. Olsen G.J., Larsen N., Woese C.R. 1991; The ribosomal RNA database project.. Nucleic Acids Research 19:2017–2021
    [Google Scholar]
  25. Saiki R.K., Scharf S., Faloona F., Mullis K.B., Horn G.T., Erlich H.A., Arnheim N.A. 1985; Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230:1350–1354
    [Google Scholar]
  26. Stahl D.A., Amann R. 1991; Development and application of nucleic acid probes.. In Nucleic Acid Techniques in Bacterial Systematics pp. 205–248, Edited by. Stackebrandt E., Goodfellow M. Chichester:: John Wiley & Sons.;
    [Google Scholar]
  27. Staley J.T., Bryat M.P., Pfennig N., Holt J.G. 1989 Bergeys̓s Manual of Systematic Bacteriology 3 Baltimore:: Williams & Wilkins.;
    [Google Scholar]
  28. Van Iterson W. 1958; Gallionella ferruginea Ehrenberg in a different light.. Academisch Proefschrift, University of Amsterdam 52:2:1–185
    [Google Scholar]
  29. Wallace D.M. 1987; Large- and small-scale phenol extractions.. Methods in Enzymology 152:33–41
    [Google Scholar]
  30. Weisburg W.G., Barnes S.M., Pelletier D.A., Lane D.J. 1991; 16S ribosomal DNA amplification for phylogentic study.. Journal of Bacteriology 173:697–703
    [Google Scholar]
  31. Woese C.R. 1987; Bacterial evolution.. Microbiological Reviews 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-7-1531
Loading
/content/journal/micro/10.1099/00221287-139-7-1531
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error