1887

Abstract

The gene () encoding the copper-containing nitrite reductase (NIR) of a denitrifying bacterium, S-6, was cloned by a synthetic oligonucleotide-probing method. The nucleotide sequence of the cloned DNA fragment revealed the primary structure of the NIR precursor containing the N-terminal signal sequence for secretion. A nucleotide sequence, possibly recognized by a transcriptional regulator resembling FNR was found upstream of the structural gene. When the cloned gene was expressed in Escherichia coli under the control of the promoter at 37 °C, NIR was produced as large inclusion bodies and little activity was detected. When cultivation was at 20 °C, most of the NIR was detected in the soluble fraction and a significant portion of the protein was translocated into the periplasmic space, accompanied by removal of its signal sequence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-4-725
1993-04-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/4/mic-139-4-725.html?itemId=/content/journal/micro/10.1099/00221287-139-4-725&mimeType=html&fmt=ahah

References

  1. Adman E. T., Turley S., Bramson R., Petratos K., Banner D. V., Tsernoglou D., Beppu T., Watanabe H. 1989; A 2·0-Å structure of the blue copper protein (cupredoxin) from Alcaligenes faecalis S-6. Journal of Biological Chemistry 264:87–99
    [Google Scholar]
  2. Ambler R. P. 1977; The evolution of metalloenzymes, metallo- proteins and related materials. In Proceedings of a Symposium of the Inorganic Biochemistry Discussion group of the Chemical Society, University of Sussex pp. 100–118 Leigh G. S. Edited by London: Symposium Press.;
    [Google Scholar]
  3. Bell A. I., Cole J. A., Busby S. J. W. 1990; Molecular genetic analysis of an FNR-dependent anaerobically inducible Escherichia coli promoter. Molecular Microbiology 4:1753–1763
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  5. Burnett W. N. 1981; ‘Western blotting’: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to un-modified nitrocellulose and radiographic detection with antibody and radioiodinated protein. Analytical Biochemistry 112:195–203
    [Google Scholar]
  6. Cole J. A. 1968; Cytochrome c552 and nitrite reductase in Escherichia coli. Biochimica et Biophysica Acta 162:356–368
    [Google Scholar]
  7. Cornelis P., Digneffe C., Willemot K. 1982; Cloning and expression of a Bacillus coagulans amylase gene in Escherichia coli. Molecular and General Genetics 186:507–511
    [Google Scholar]
  8. Eiglmeier N., Honorë N., Iuchi S., Lin E. C. C., Cole S. T. 1989; Molecular genetic analysis of FNR-dependent promoters. Molecular Microbiology 3:869–878
    [Google Scholar]
  9. Fenderson E. F., Kumar S., Adman E. T., Liu M.-Y., Payne W. J., Legall J. 1991; Amino acid sequence of nitrite reductase: a copper protein from Achromobacter cycloclastes. Biochemistry 30:7180–7185
    [Google Scholar]
  10. Godden J. W., Turley S., Teller D. C., Adman E. T., Liu M.-Y., Payne W. J., Legall J. 1991; The 2·3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science 253:438–442
    [Google Scholar]
  11. Grunstein M., Hogness D. S. 1975; Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proceedings of the National Academy of Sciences of the United States of America 72:248–254
    [Google Scholar]
  12. Hormel S., Adman E. T., Walsh K. A., Beppu T., Titani K. 1986; The amino acid sequence of the blue copper protein of Alcaligenes faecalis. FEBS Letters 197:301–304
    [Google Scholar]
  13. Inouye S., Wang S.-S., Sekizawa J., Halegoua S., Inouye M. 1977; Amino acid sequence for the peptide extension on the prolipoprotein of the Escherichia coli outer membrane. Proceedings of the National Academy of Sciences of the United States of America 74:1004–1008
    [Google Scholar]
  14. Ikemura H., Takagi H., Inouye M. 1987; Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. Journal of Biological Chemistry 262:7859–7864
    [Google Scholar]
  15. Jayaraman P.-S., Peakman T. C., Busby S. J. W., Quincey R. V., Cole J. A. 1987; Location and sequence of the promoter of the gene for NADH-dependent nitrite reductase of Escherichia coli and its regulation by oxygen, the Fnr protein and nitrite. Journal of Molecular Biology 196:781–788
    [Google Scholar]
  16. Jayaraman P.-S., Gaston K. L., Cole J. A., Busby S. J. W. 1988; The nirB promoter of Escherichia coli: location of nucleotide sequences essential for regulation by oxygen, the FNR protein and nitrite. Molecular Microbiology 2:527–530
    [Google Scholar]
  17. Kakutani T., Beppu T., Arima K. 1981a; Regulation of nitrite reductase in the denitrifying bacterium Alcaligenes faecalis.(1981). Agricultural and Biological Chemistry 45:23–28
    [Google Scholar]
  18. Kakutani T., Watanabe H., Arima K., Beppu T. 1981b; Purification and properties of a copper-containing nitrite reductase from a denitrifying bacterium, Alcaligenes faecalis. Journal of Biochemistry, Tokyo 89:453–461
    [Google Scholar]
  19. Kakutani T., Watanabe H., Arima K., Beppu T. 1981c; A blue protein as an inactivating factor for nitrite reductase from Alcaligenes faecalis. Journal of Biochemistry, Tokyo 87:463–472
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  21. Li S.-F., Demoss J. A. 1987; Promoter region of the nar operon of Escherichia coli: nucleotide sequence and transcription initiation signals. Journal of Bacteriology 187:4614–4620
    [Google Scholar]
  22. Liu M.-Y., Liu M.-C., Payne W. J., Legall J. 1986; Properties and electron transfer specificity of copper proteins from the denitrifier Achromobacter cycloclastes. Journal of Bacteriology 166:604–608
    [Google Scholar]
  23. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  24. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  25. Nishiyama M., Suzuki J., Ohnuki T., Chang H.-C., Horinouchi S., Turley S., Adman E. T., Beppu T. 1992; Site-directed mutagenesis of pseudoazurin from Alcaligenes faecalis S-6; Pro80Ala mutant exhibits marked increase in reduction potential. Protein Engineerings 5:177–184
    [Google Scholar]
  26. Petratos K., Beppu T., Banner D. V., Tsernoglou D. 1986; Preliminary characterization of crystals of nitrite reductase isolated from Alcaligenes faecalis strain S-6. Journal of Molecular Biology 190:135
    [Google Scholar]
  27. Petratos K., Banner D. V., Beppu T., Wilkinson K. S., Tsernoglou D. 1987; The crystal structure of pseudoazurin from Alcaligenes faecalis S-6 determined at 2·9 Å resolution. FEBS Letters 218:209–214
    [Google Scholar]
  28. Saito H., Miura K. 1963; Preparation of transforming de-oxyribonucleic acid by phenol treatment. Biochimica et Biophysica Acta 72:619–629
    [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  30. Schein C. H., Noteborn M. H. M. 1988; Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technology 6:291–294
    [Google Scholar]
  31. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by agarose gel electrophoresis. Journal of Molecular Biology 98:513–517
    [Google Scholar]
  32. Spiro S., Guest J. R. 1990; FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiology Reviews 75:399–428
    [Google Scholar]
  33. Unden G., Guest J. R. 1985; Isolation and characterization of the Fnr protein, the transcriptional regulator of anaerobic electron transport in Escherichia coli. European Journal of Biochemistry 146:193–199
    [Google Scholar]
  34. Yamamoto K., Uozumi T., Beppu T. 1987; The blue copper protein gene of Alcaligenes faecalis S-6 directs secretion of blue copper protein from Escherichia coli cells. Journal of Bacteriology 169:5648–5652
    [Google Scholar]
  35. Yanisch-perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-4-725
Loading
/content/journal/micro/10.1099/00221287-139-4-725
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error