1887

Abstract

It is shown that possesses a Ca transporter, sensitive to the amiloride derivative 2′,4′-dimethylbenzamil (DMB), which is essential for grown at high Ca-concentrations, and which mediates the triggering by Ca of competence for genetic transformation in the exponential phase and autolysis in the late exponential phase. DMB inhibited both Ca transport and the Ca response. Kinetic analysis of Ca transport in ATP-depleted revealed an electrogenic influx sensitive to DMB. This transport was cooperative with respect to Ca concentration, and exhibited a Hill coefficient (nH) of 2. In bacteria pre-loaded with Ca, a DMB-sensitive efflux could be triggered by an imposed Na gradient. The efflux kinetics showed the same cooperativity profile as Ca concentration and a similar nH value to that of influx, suggesting a possible Na/Ca antiport. Cooperativity of transport was lowered (nH = 1) by a mutation that confers resistance to DMB and abolishes the Ca response. These results demonstrate that DMB-sensitive Ca transport is essential for growth and competence regulation. The role of the DMB-sensitive porter involved in Ca circulation and in Ca homeostasis and its possible regulation by competence factor are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-3-433
1993-03-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/3/mic-139-3-433.html?itemId=/content/journal/micro/10.1099/00221287-139-3-433&mimeType=html&fmt=ahah

References

  1. Ambudkar S. V., Lynn A. R., Maloney P. C., Rosen B. P. 1986; Reconstitution of ATP-dependent calcium transport from streptococci. Journal of Biological Chemistry 261:15596–15600
    [Google Scholar]
  2. Berry A. M., Lock R. A., Hansman D., Paton J. C. 1989; Contribution of autolysin to virulence of Streptococcus pneumoniae. Infection and Immunity 57:2324–2330
    [Google Scholar]
  3. Campbell A. K. 1983 Intracellular Calcium: its Universal Role as Regulator Chichester: John Wiley;
    [Google Scholar]
  4. Carafoli D. 1987; Intracellular calcium homeostasis. Annual Review of Biochemistry 57:395395–433
    [Google Scholar]
  5. Carafoli E. 1988; The intracellular homeostasis of calcium: an overview. Annals of the New York Academy of Sciences 551:147–158
    [Google Scholar]
  6. Cegielska A., Georgopoulos C. 1989; Functional domains of the Escherichia coli dnaK heat shock protein as revealed by mutational analysis. Journal of Biological Chemistry 264:21122–21130
    [Google Scholar]
  7. Clavé C., Morrison D. A., Trombe M. C. 1987; Is DNA transport driven by the proton electrochemical potential difference in naturally transformable Streptococcus pneumonia?. Bioelectrochemistry and Bioenergetics 17:269–276
    [Google Scholar]
  8. Clavé C., Trombe M. C. 1989; Intracellular pH and ATP involvement in DNA uptake by Streptococcus pneumoniae. FEMS Microbiology Letters 65:113–118
    [Google Scholar]
  9. Cuthbert A. W., Fanelly G. M. 1978; Effects of some pyrazine-carboxamides on sodium transport in frog skin. Journal of Pharmacology 63:139–149
    [Google Scholar]
  10. Dubnau D. 1991; Genetic competence in Bacillus subtilis. Microbiological Reviews 55:395–424
    [Google Scholar]
  11. Falah A. M. S., Bathnagar R., Bathnagar N., Singh Y., Sidhu G. S., Murthy P. S., Venkitasubramanian T. A. 1988; On the presence of calmodulin-like protein in mycobacteria. FEMS Microbiology Letters 56:89–94
    [Google Scholar]
  12. Frey J., Nicolet J. 1988; Regulation of hemolysin expression in Actinobacillus pleuropneumoniae serotype 1 and Ca2+. Infection and Immunity 56:2570–2575
    [Google Scholar]
  13. Fry I. J., Villa L., Kuehn G. D., Hageman J. H. 1983; Calmodulin-like protein fromBacillus subtilis. Biochemical and Biophysical Research Communications 134:212–217
    [Google Scholar]
  14. Heefner D. L. 1982; Transport of H+, K+, Na+ and Ca2+ in Streptococcus. Molecular and Cellular Biochemistry 44:81–106
    [Google Scholar]
  15. Iada H., Sakaguchi S., Yagava Y., Anraku Y. 1990; Cell cycle control by Ca2+ in Saccharomyces cerevisiae. Journal of Biological Chemistry 265:21216–21222
    [Google Scholar]
  16. Inouye S., Franceschini T., Inouye M. 1983; Structural similarities between the development-specific protein S from a Gramnegative bacterium Myxococcus xanthus and calmodulin. Proceedings of the National Academy of Sciences of United State of America 806829–6833
    [Google Scholar]
  17. Kaczorowski G. J., Barros F., Dethmers J. K., Trumble M. J. 1985; Inhibition of Na2+/Ca2+ exchange in pituitary membrane vesicles by analogues of amilorides. Biochemistry 24:1394–1403
    [Google Scholar]
  18. Kobayashi H., Van Brunt J., Harold F. M. 1978; ATP-linked calcium transport in cells and membrane vesicles of Streptococcus faecalis. Journal of Biological Chemistry 253:2085–2092
    [Google Scholar]
  19. Lacks S. A., Greenberg B., Neuberger M. 1975; Identification of a deoxyribonuclease implicated in genetic transformation of Diplococcus pneumoniae. Journal of Bacteriology 123:222–232
    [Google Scholar]
  20. Lopez A., Clavé C., Capeyrou R., Lafontan V., Trombe M. C. 1989; Ionic and energetic changes at competence in the naturally transformable bacterium Streptococcus pneumoniae. Journal of General Microbiology 135:2189–2197
    [Google Scholar]
  21. Metcalfe J. C., Hesketh T. R., Smith G. A., Morris D. H., Corps A. N., Moore J. P. 1985; Early response pattern analysis of the mitogenic pathway in lymphocytes and fibroblasts. Journal of Cell Sciences (Suppl.) 3:199–228
    [Google Scholar]
  22. Miyakama T., Tachikawa T., Jeong Y. K., Tsushiya E., Fukui S. 1985; Transient increase of Ca2+ uptake as a signal of mating pheromone-induced differentiation in the heterobasidiomycetous yeast Rhodospiridium toruloides. Journal of Bacteriology 162:1304–1306
    [Google Scholar]
  23. Morrison D. A., Baker F. M. 1979; Competence for genetic transformation in pneumococcus depends on the synthesis of a small set of proteins. Nature; London: 282215–217
    [Google Scholar]
  24. Morrison D. A., Trombe M. C., Hayden M. K., Waszack G. A., Chen J. D. 1984; Isolation of transformation-deficient Streptococcus pneumoniae mutants defective in control of competence, using insertion-duplication mutagenesis with the erythromycine resistance determinant pAMBl. Journal of Bacteriology 159:870–876
    [Google Scholar]
  25. Norris V., Chen M., Goldberg M., Voskuil J., McGurk G., Holland B. 1991; Calcium in bacteria: a solution to which problem?. Molecular Microbiology 5:775–778
    [Google Scholar]
  26. Onek L. A., Smith R. J. 1992; Calmodulin and calcium mediated regulation in prokaryotes. Journal of General Microbiology 138:1039–1049
    [Google Scholar]
  27. Paris S., Pouyssegur J. 1984; Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+. Journal of Biological Chemistry 259:10989–10994
    [Google Scholar]
  28. Pouyssegur J., Sardet C., Franchi A., L’Allemain G., Paris S. 1984; A specific mutation abolishing Na2+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proceedings of the National Academy of Sciences of the United States of America 814833–4837
    [Google Scholar]
  29. Puyet A., Greenberg B., Lacks S. A. 1990; Genetic and structural characterization of EndA, a membrane-bound nuclease required for transformation of Streptococcus pneumoniae. Journal of Molecular Biology 213:727–738
    [Google Scholar]
  30. Rosen B. P. 1987; Bacterial calcium transport. Biochimica et Biophysica Acta 906:101–110
    [Google Scholar]
  31. Rozengurt E. 1980; Stimulation of DNA synthesis in quiescent cultured cells: exogenous agents, internal signals, and early events,. Current Topics in Cellular Regulation 17:59–88
    [Google Scholar]
  32. Sanchez-Puelles J. M., Ronda C., Garcia J. L., Garcia P., Lopez R., Garcia E. 1986; Searching for autolysin functions.Characterization of a pneumococcal mutant deleted in the lytA gene. European Journal of Biochemistry 158:289–293
    [Google Scholar]
  33. Simchovitz L., Cragoe E. J. 1986; Inhibition of chemotactic factor-activated Na+/H+ exchange in human neutrophils by analogs of amilorides: structure-activity relationships in the amiloride series. Molecular Pharmacology 30:112–120
    [Google Scholar]
  34. Swan D. G., Hale R. S., Dillon N., Leadley P. F. 1987; A bacterial calcium-binding protein homologous to calmodulin. Nature; London: 32984–89
    [Google Scholar]
  35. Swan D. G., Cortes J., Hales R. S., Leadley P. F. 1989; Cloning, characterization and heterologous expression of the Saccharopolyspora erythraea gene encoding an EF-Hand calcium binding protein. Journal of Bacteriology 171:5614–5619
    [Google Scholar]
  36. Tiraby G., Fox M. 1973; Marker discrimination in transformation and mutation of Streptococcus pneumoniae. Proceedings of the National Academy of Sciences of the UnitedStates of America 703541–3545
    [Google Scholar]
  37. Tomasz A., Hotchkiss R. D. 1964; Regulation of the transform-ability of pneumococcal cultures by macromolecular cells products. Proceedings of the National Academy of Sciences of the United States of America 51480–487
    [Google Scholar]
  38. Trombe M. C. 1984; Alteration of Streptococcus pneumoniae membrane properties by the folate analog methotrexate. Journal of Bacteriology 160:2840–2853
    [Google Scholar]
  39. Trombe M. C., Lanéelle G., Sicard A. M. 1984; Characterization of a Streptococcus pneumoniae mutant with altered electric transmembrane potential. Journal of Bacteriology 158:1109–1114
    [Google Scholar]
  40. Trombe M. C., Clavé C., Manias J. M. 1992; Calcium regulation of growth and differentiation in Streptococcus pneumoniae. Journal of General Microbiology 138:77–84
    [Google Scholar]
  41. Tsujibo H., Rosen B. 1983; Energetics of calcium efflux from cells of Eschericia coli. Journal of Bacteriology 154:854–858
    [Google Scholar]
  42. Vrij W., Bulthuis R., Postma E., Konings W. M. 1985; Calcium transport in membrane vesicles of Bacillus subtilis. Journal of Bacteriology 164:1294–1300
    [Google Scholar]
  43. Ziegler R., Tomasz A. 1970; Binding of competence factor to receptors in the spheroplast membrane of streptococci. Biochemical and Biophysical Research Communications 41:1342–1349
    [Google Scholar]
/content/journal/micro/10.1099/00221287-139-3-433
Loading
/content/journal/micro/10.1099/00221287-139-3-433
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error