1887
Preview this article:
Zoom in
Zoomout

Bacterial cellulases and xylanases, Page 1 of 1

| /docserver/preview/fulltext/micro/139/2/mic-139-2-187-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-2-187
1993-02-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/2/mic-139-2-187.html?itemId=/content/journal/micro/10.1099/00221287-139-2-187&mimeType=html&fmt=ahah

References

  1. Bayer E.A., Lamed R. 1986; Ultrastructure of the cell surface cellulosome ofClostridium thermocellumand its interaction with cellulose. Journal of Bacteriology 167:828–836
    [Google Scholar]
  2. BéGuin P. 1990; Molecular biology of cellulose degradation. Annual Review of Microbiology 44:219–248
    [Google Scholar]
  3. BéGuin P., Cornet P., Aubert J.P. 1985; Sequence of a cellulase gene of the thermophilic bacteriumClostridium themocellum. Journal of Bacteriology 162:102–105
    [Google Scholar]
  4. Biely P. 1985; Microbial xylanolytic systems. Trends in Biotechnology 3:286–291
    [Google Scholar]
  5. Biely P. 1991; Biotechnological potential and production of xylanolytic systems free of cellulases. . In Enzymes in Biomass Conversion ACS symposium series 460 pp. 408–416 Leatham G.F., Himmel M.E. Edited by Washington, DC: American Chemical Society;
    [Google Scholar]
  6. Bronnenmeier K., RüCknagel K., Staundenbauer W.L. 1991; Purification and properties of a novel type of exo-1,4-β-glucanase (Avicelase II) from the cellulolytic thermophileClostridium sterco-rarium. European Journal of Biochemistry 200:379–385
    [Google Scholar]
  7. Chauvaux S., BéGuin P., Aubert J.P. 1992; Site-directed mutagenesis of essential carboxylic residues inClostridium thermocellumendoglucanase CelD. Journal of Biological Chemistry 267:4472–4478
    [Google Scholar]
  8. Coughlan M.P. 1985; Cellulases: production,properties and applications. Biochemical Society Transactions 13:405–406
    [Google Scholar]
  9. Coughlan M.P. 1990; Cellulose degradation by fungi. In Microbial Enzymes and Biotechnology pp. 1–36 Fogarty W.M., Kelly C.T. Edited by London: New York: Elsevier Applied Science.;
    [Google Scholar]
  10. Coughlan M.P., Ljungdahl L.G. 1988; Comparative biochemistry of fungal and bacterial cellulolytic enzyme systems. In Biochemistry and Genetics of Cellulose Degradation FEMS Symposium no. 43 pp. 11–30 Aubert J.-P., BéGuin P., Millet J. Edited by London & San Diego: Academic Press;
    [Google Scholar]
  11. Coutinho J.B., Moser B., Kilburn D.G., Warren R.A.J., Miller R.C. 1991; Nucleotide sequence of the endoglucanase C gene (cenC) ofCellulomonas fimi,its high-level expression inEscherichia coli,and characterization of its products. Molecular Microbiology 51221–1233
    [Google Scholar]
  12. Din N., Gilkes N.R., Tekant B., Miller R.C., Warren R.A.J., Kilburn D.G. 1991; Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Bio/Technology 9:1096–1099
    [Google Scholar]
  13. Doolittle R.F. 1979; Protein evolution. In The Proteins 4 pp. 1–118 Neurath H., Hills R.L. Edited by New York: Academic Press;
    [Google Scholar]
  14. Durrant A.J., Hall J., Hazlewood G.P., Gilbert H.J. 1991; The non-catalytic C-terminal region of endoglucanase E from Clostridium thermocellumcontains a cellulose-binding doma. In Biochemical Journal 273:289–293
    [Google Scholar]
  15. Ferreira L.M.A., Durrant A.J., Hall J., Hazlewood G.P., Gilbert H.J. 1990; Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Biochemical Journal 269:261–264
    [Google Scholar]
  16. Ferreira L.M.A., Hazlewood G.P., Barker P.J., Gilbert H.J. 1991; The cellodextrinase from Pseudomonas fluorescenssubsp cellulosaconsists of multiple functional domains. Biochemical Journal 279:793–799
    [Google Scholar]
  17. Fujino T., Béguin P., Aubert J.-P. 1992; Cloning of a Clostridium thermocellumDNAfragment encoding polypeptides that bind the catalytic components of the cellulosome. FEMS Microbiology Letters 94:165–170
    [Google Scholar]
  18. Fukumori F.N., Sashihara N., Kudo T., Horikoshi K. 1986; Nucleotide sequences of two cellulase genes from alkalophilic Bacillussp. strain N-4 and their strong homology. Journal of Bacteriology 168:479–485
    [Google Scholar]
  19. Gilbert H. J., Hazlewood G.P. 1991; Genetic modification of fibre digestion. Proceedings of the Nutrition Society 50:173–186
    [Google Scholar]
  20. Gilbert H.J., Jenkins G., Sullivan D.A., Hall J. 1987; Evidence for multiple carboxymethylcellulase genes in Pseudomonas fluorescens subsp. cellulosa. Molecular and General Genetics 210:551–556
    [Google Scholar]
  21. Gilbert H.J., Hall J., Hazlewood G.P., Ferreira L.M.A. 1990; The N-terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulose-binding domain that is distinct from the catalytic centre. Molecular Microbiology 4759–767
    [Google Scholar]
  22. Gilkes N.R., Henrissat B., Kilburn D.G., Miller R.C.JR Warren R.A.J. 1991a; Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiological Reviews 55:303–315
    [Google Scholar]
  23. Gilkes N.R., Kilburn D.G., Miller R.C., Warren R.A.J. 1991b; Bacterial cellulases. Bioresource Technology 36:21–35
    [Google Scholar]
  24. Gow L.A., Wood T.M. 1988; Breakdown of crystalline cellulose by synergistic actionbetween cellulase components from Clostridium thermocellum and Trichoderma koningii. FEMS Microbiology Letters 50:247–252
    [Google Scholar]
  25. Grépinet O., BéGuin P. 1986; Sequence of the cellulase gene of Clostridium thermocellum coding for endoglucanase B. Nucleic Acids Research 14:1791–1799
    [Google Scholar]
  26. GréPinet O., Chebrou M.-C., BéGuin P. 1988; Nucleotide sequence and deletion analysis of the xylanase gene(xynZ) of Clostridium thermocellum. Journal of Bacteriology 170:4582–4588
    [Google Scholar]
  27. Hall J., Gilbert H.J. 1988; The nucleotide sequence of a carboxymethylcellulase genefrom Pseudomonas fluorescens subsp cellulosa. Molecular and General Genetics 213:112–117
    [Google Scholar]
  28. Hall J., Hazlewood G.P., Barker P.J., Gilbert H.J. 1988; Conserved reiterated domains in Clostridium thermocellum endo-glucanases are not essential for catalytic activity. Gene 69:29–38
    [Google Scholar]
  29. Hall J., Hazlewood G.P., Huskisson N.S., Durrant A.J., Gilbert H.J. 1989; Conserved serine-rich sequences in xylanase and cellulase from Pseudomonas fluorescens subsp cellulosa: internal signal sequence and unusual protein processing. Molecular Microbiology 3:1211–1219
    [Google Scholar]
  30. Hazlewood G.P., Romaniec M.P.M., Davidson K., Grépinet O., Béguin P., Millet J., Raynaud O., Aubert J.-P. 1988; A catalogue of Clostridium thermocellum endoglucanase,β-glucosidase and xylanase genes cloned in Escherichia coli. FEMS Microbiology Letters 51:231–236
    [Google Scholar]
  31. Hazlewood G.P., Davidson K., Laurie J.I., Romaniec M.P.M., Gilbert H.J. 1990; Cloning and sequencing of the celA gene encoding endoglucanase A of Butyrivibrio fibrisolvens strain A46. Journal of General Microbiology 136:2089–2097
    [Google Scholar]
  32. Hazlewood G.P., Davidson K., Laurie J.I., Huskisson N.S., Gilbert H.J. 1993; Gene sequence and properties of Cell, a family E endoglucanase from Clostridium thermocellum. Journal of General Microbiology 139:307–316
    [Google Scholar]
  33. Henrissat B., Claeyssens M., Tomme P., Lemesle L., Mornon J.-P. 1989; Cellulase families revealed by hydrophobic cluster analysis. Gene 81:83–95
    [Google Scholar]
  34. Jauris S., RÜCknagel K.P., Schwarz W.H., Kratzsch P., Bronnenmeier K., Staudenbauer W.L. 1990; Sequence analysis of the Clostridium stercorariumcelZ gene encoding a thermoactive cellulase (Avicelase I).Identification of catalytic and cellulose binding domains. Molecular and General Genetics 223:258–267
    [Google Scholar]
  35. Juy M., Amit A.G., Alzari P.M., Poljak R.J., Claeyssens M., BéGuin P., Aubert J.-P. 1992; Three dimensional structure of a thermostable bacterial cellulase. Nature; London: 35789–91
    [Google Scholar]
  36. Kellett L.E., Poole D.M., Ferreira L.M.A., Durrant A.J., Hazlewood G.P., Gilbert H.J. 1990; Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochemical Journal 272:369–376
    [Google Scholar]
  37. Lamed R., Bayer E.A. 1988; The cellulosome of Clostridium thermocellum. Advances in Applied Microbiology 33:1–46
    [Google Scholar]
  38. Lamed R., Naimark J., Morgenstern E., Bayer E.A. 1987; Specialized cell surface structures in cellulolytic bacteria. Journal of Bacteriology 169:3792–3800
    [Google Scholar]
  39. Lee S.F., Forsberg C.W. 1987; Purification and characterization of an α-l-arabinofuranosidase from Clostridium acetobutylicum. Canadian Journal of Microbiology 33:1011–1016
    [Google Scholar]
  40. Mckay R.M., Lo O., Willick G., Zucker M., Daird S., Dove M., Moranelli F., Seligy V. 1986; Structure of a Bacillus subtilis endo-β-l,4-glucanase gene. Nucleic Acids Research 14:9159–9170
    [Google Scholar]
  41. Mandels M. 1985; Application of cellulases. Biochemical Society Transactions 13:414–416
    [Google Scholar]
  42. Mayer F., Coughlan M.P., Mari Y., Ljungdahl L.G. 1987; Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy. Applied and Environmental Microbiology 53:785–792
    [Google Scholar]
  43. Meinke A., Braun C., Gilkes N.R., Kilburn D.G., Miller R.C.JR Warren R.A.J. 1991; Unusual sequence organization in CenB, an inverting endoglucanase from Cellulomonasfimi. Journal of Bacteriology 171:308–314
    [Google Scholar]
  44. Morag E., Halevy I., Bayer E.A., Lamed R. 1991; Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum. Journal of Bacteriology 179:25–31
    [Google Scholar]
  45. O’Neil G.P., Goh S.H., Warren R.A.J., Kilburn D.G., Miller R.C. 1986; Structure of the gene encoding the exo-glucanase of Cellulomonas fimi. Gene 44:325–330
    [Google Scholar]
  46. Pilz I., Schwarz E., Kilburn D.G., Miller R.C.Jr Warren R.A.J., Gilkes N.R. 1990; The tertiary structure of a bacterial cellulase determined by small-angle X-ray scattering analysis. Biochemical Journal 271:277–280
    [Google Scholar]
  47. Poole D.M., Hazlewood G.P., Laurie J.I., Barker P.J., Gilbert H.J. 1990; Nucleotide sequence of the Ruminococcus albus SY3 endoglucanase genes cel A and celB. Molecular and General Genetics 223:217–223
    [Google Scholar]
  48. Poole D.M., Morag E., Lamed R., Bayer E.A., Hazlewood G.P., Gilbert H.J. 1992; Identification of the cellulose binding domain of cellulosome subunit SI from Clostridium thermocellum. FEMS Microbiology Letters (in the Press)
    [Google Scholar]
  49. Poutanen K., Tenkanen M., Korte H., Puls J. 1991; Accessory enzymes involved in in the hydrolysis of xylans. ACS Symposium series 460 pp. 426–436 Leatham G.F., Himmel M.E. Edited by Washington, DC: American Chemical Society;
    [Google Scholar]
  50. Rixon J.E., Ferreira L.M.A., Durrant A.J., Laurie J.I., Hazlewood G.P., Gilbert H.J. 1992; Characterization of the gene celD and itsencoded product l,4-β-D-glucan glucohydrolase D from Pseudomonas fluorescens subsp cellulosa. Biochemical Journal 285:947–955
    [Google Scholar]
  51. Robson L.M., Chambliss G.H. 1989; Cellulases of bacterial orig. In Enzyme and Microbial Technology 11:626–644
    [Google Scholar]
  52. Rouvinen J., Bergfors T., Teeri T., Knowles J.K.C., Jones T.A. 1990; Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–386
    [Google Scholar]
  53. Saul D.J., Williams L.C., Grayling R.W., Chamley L.W., Love D.R., Bergquist P.L. 1990; CelB,a gene coding for a bifunctional cellulase from the extreme thermophile Caldocellum saccharolyticum. Applied and Environmental Microbiology 56:3117–3124
    [Google Scholar]
  54. Seiboth B., Messner R., Gruber F., Kubicek C.P. 1992; Disruption of the Trichoderma reesei cbh2 gene coding for cellobiohydrolase II leads to a delay in the triggering of cellulase formation by cellulose. Journal of General Microbiology 138:1259–1264
    [Google Scholar]
  55. Shen H., Schmuck M., Pilz I., Gilkes N.R., Kilburn D.G., Miller R.C.JR Warren R.A.J. 1991; Deletion of the linker connecting the catalytic and cellulose-binding domains of endoglucanase A (CenA) of Cellulomonas fimi alters its conformation and catalytic activity. Journal of Biological Chemistry 266:11335–11340
    [Google Scholar]
  56. Shoseyov O., Doi R. 1990; Essential 170 kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. Proceedings of the National Academy of Sciences of the United States of America 87:2192–2195
    [Google Scholar]
  57. Shoseyov O., Takagi M., Goldstein M.A., Doi R.H. 1992; Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proceedings of the National Academy of Sciences of the United States of America 89:3483–3487
    [Google Scholar]
  58. Stutzenberger F. 1990; Bacterial cellulases. In Microbial Enzymes and Biotechnology pp. 37–70 Fogarty W.M., Kelly C.T. Edited by London & New York: Elsevier Applied Science Publishers;
    [Google Scholar]
  59. Tokatlidis K., Salamitou S., BéGuin P., Dhurjati P., Aubert J.-P. 1991; Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Letters 291:185–188
    [Google Scholar]
  60. Watanabe T., Kasahara N., Aida K., Tanaka H. 1992; Three N-terminal domains of β-l,3-glucanase A1 are involved in binding to insoluble β-l,3-glucan. Journal of Bacteriology 174:186–190
    [Google Scholar]
  61. West C.A., Elzanowski A., Yeh L.-S., Barker W. 1989; Homologues of catalytic domains of Cellulomonas glucanases found in fungal and Bacillus glucosidases. FEMS Microbiology Letters 59:167–172
    [Google Scholar]
  62. Whistler R.L., Richards E.L. 1970; Hemicelluloses. , 2nd edn. 2A pp. 447–469 Pigman D., Horton S.K. Edited by New York: Academic Press;
    [Google Scholar]
  63. Wilson D.B. 1988; Cellulases of Thermomonospora fusca. Methods in Enzymology 160:314–323
    [Google Scholar]
  64. Wong K.K.Y., Tan L.U. L., Saddler J.N. 1988; Multiplicity of β-l,4-xylanases in microorganisms:functions and applications. Microbiological Reviews 52:305–317
    [Google Scholar]
  65. Wood T.M. 1989; Mechanisms of cellulose degradation by enzymes from aerobic and anaerobic fungi. pp. 17–35 Coughlan M.P. Edited by London: Elsevier Applied Science Publishers;
    [Google Scholar]
  66. Wu J.H.D., Orme-Johnson W. H., Demain A.L. 1988; Two components of an extracelluar protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry 27:1703–1709
    [Google Scholar]
  67. Zhang J.-X., Flint H.J. 1992; A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens17 comprises two dissimilar domains linked by an asparagine/glutamine-rich sequence. Molecular Microbiology 6:1013–1023
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-2-187
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error