Full text loading...
Abstract
The Dictyostelium discoideum glycogen phosphorylase-1 (gp-1) exhibits a complex pattern of developmental expression in which differential temporal regulation of enzyme activity, protein levels and mRNA levels is observed. This pattern of expression implies that gp-1 regulation occurs at multiple levels, probably involving both transcriptional and post-transcriptional events. Post-translational control of gp-1 activity, in effect, actually regulates the protein from a developmental perspective. In this report we have examined several facets of this regulation. We show that addition of exogenous cAMP to cells in suspension culture caused changes in gp-1 enzyme activity and mRNA levels that are identical to those observed during normal development, suggesting that cAMP is involved in the regulation of gp-1. Exogenous cAMP could regulate gp-1 mRNA expression at concentrations as low as 1·0 μm. cAMP regulation of gp-1 mRNA appeared to occur through a mechanism that required intracellular cAMP signalling. We identified regions of the promoter necessary for gp-1 expression by using gp-1 promoter deletions to drive the expression of a luciferase reporter gene. Results of these experiments suggested that developmental and cAMP-mediated changes in gp-1 mRNA levels were the result of alterations in transcription. The promoter analysis also suggested that a vegetative specific element is located between −785 and −1894 nucleotides from the transcriptional start site. Elements necessary for maximal developmental and cAMP-mediated expression appear to be located between −1153 and −1894 nucleotides from the cap site. Sequence elements located between −180 and −1153 appear to be required for a basal level of late developmental expression.
- Received:
- Accepted:
- Revised:
- Published Online: