1887

Abstract

The gene, encoding a single polypeptide that catalyses five consecutive steps of the pre-chorismate aromatic amino acid biosynthetic pathway, has been cloned from the opportunistic pathogen . There is a single open reading frame of 4788 bp which includes an intron of 45 bp that does not introduce a stop codon into the sequence. Thus, the derived amino acid sequence consists of 1581 residues, which is highly homologous to all fungal AROM proteins studied to date. These data support the view that is a fungus and imply that its aromatic amino acid biosynthesis is conventionally organized.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-12-2901
1993-12-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/12/mic-139-12-2901.html?itemId=/content/journal/micro/10.1099/00221287-139-12-2901&mimeType=html&fmt=ahah

References

  1. Anton I.A., Coggins J.R. 1988; Sequencing and overexpression of the Escherichia coli aroE gene encoding shikimate dehydrogenase. Biochemical Journal 249:319–326
    [Google Scholar]
  2. Bachmann B.J. 1983; Linkage map of Escherichia coli. , 7. Microbiological Reviews 47:180–230
    [Google Scholar]
  3. Berlyn M.B., Ahmed S.I., Giles N.H. 1970; Organization of polyaromatic biosynthetic enzymes in a variety of photosynthetic organisms. Journal of Bacteriology 104:768–774
    [Google Scholar]
  4. Burns J., Graham A.F., Frank C., Flemming K.A., Evans M.F., Mcgee J.O’D. 1987; Detection of low copy papilloma virus DNA and mRNA in routine paraffin sections of cervix by nonisotopic in situ hybridisation. Journal of Clinical Pathology 40:858–864
    [Google Scholar]
  5. Charles I.G., Keyte J.W., Brammar W.J., Smith M., Hawkins A.R. 1986; The isolation and nucleotide sequence of the complex AROM locus of Aspergillus nidulans. Nucleic Acids Research 14:2201–2213
    [Google Scholar]
  6. Chaudhuri S., Duncan K., Graham L.D., Coggins J.R. 1991; Identification of the active-site lysine residues of two biosynthetic 3-dehydroquinases. Biochemical Journal 275:1–6
    [Google Scholar]
  7. Chen E.Y., Seeburg P.H. 1985; Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170
    [Google Scholar]
  8. Cushion M.T., Zhang J., Kaselis M., Giuntoli D., Stringer S.L., Stringer J.R. 1993; Evidence for two genetic variants of Pneumocystis carinii coinfecting laboratory rats. Journal of Clinical Microbiology 31:1217–1223
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  10. Duncan K., Lewendon A., Coggins J.R. 1984; The complete amino acid sequence of Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase. FEBS Letters 170:59–63
    [Google Scholar]
  11. Duncan K., Chaudhuri S., Campbell M.S., Coggins J.R. 1986; The overexpression and complete amino acid sequence of Escherichia coli 3-dehydroquinase. Biochemical Journal 238:475–483
    [Google Scholar]
  12. Duncan K., Edwards R.M., Coggins J.R. 1987; The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Biochemical Journal 246:375–386
    [Google Scholar]
  13. Duncan K., Edwards R.M., Coggins J.R. 1988; The Saccharomyces cerevisiae ARO1 gene: an example of the co-ordinate regulation of five enzymes on a single pathway. FEBS Letters 241:83–88
    [Google Scholar]
  14. Dyer M., Volpe F., Delves C.J., Somia N., Burns S., Scaife J.G. 1992; Cloning and sequence of a β-tubulin cDNA from Pneumocystis carinii: possible implications for drug therapy. Molecular Microbiology 6:991–1001
    [Google Scholar]
  15. Edman J.C., Kovacs J.A., Masur H., Santi D.V., Elwood H.J., Sogin M.L. 1988; Ribosomal RNA sequence shows Pneumo-cystis carinii to be a member of the fungi. Nature; London: 334519–522
    [Google Scholar]
  16. Edman J.C., Edman U., Cao M., Lundgren B., Kovacs J.A., Santi D.V. 1989a; Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene. Proceedings of the National Academy of Sciences of the United States of America 868625–8629
    [Google Scholar]
  17. Edman U., Edman J.C., Lundgren B., Santi D.V. 1989b; Isolation and expression of the Pneumocystis carinii thymidylate synthase gene. Proceedings of the National Academy of Sciences of the United States of America 866503–6507
    [Google Scholar]
  18. Emanuel J.R. 1991; Simple and efficient system for synthesis of non-radioactive nucleic hybridization probes using PCR. Nucleic Acids Research 19:2790
    [Google Scholar]
  19. Fink G.R. 1986; Translational control of transcription in eukaryotes. Cell 45:155–156
    [Google Scholar]
  20. Garbe T., Servos S., Hawkins A.R., Dimitriadis G., Young D., Dougan G., Charles I. 1991; The Mycobacterium tuberculosis shikimate pathway genes: evolutionary relationship between biosynthetic and catabolic 3-dehydroquinases. Molecular and General Genetics 228:385–392
    [Google Scholar]
  21. Giles N.H. 1978; The organization, function, and evolution of gene clusters in eukaryotes. American Naturalist 112:641–657
    [Google Scholar]
  22. Giles N.H., Case M.E., Partridge C.W.H., Ahmed S.I. 1967; A gene cluster in Neurospora crassa coding for an aggregate of five aromatic synthetic enzymes. Proceedings of the National Academy of Sciences of the United States of America 581453–1460
    [Google Scholar]
  23. Hawkins A.R. 1987; The complex Arom locus of Aspergillus nidulans. Evidence for multiple gene fusions and convergent evolution. Current Genetics 11:491–498
    [Google Scholar]
  24. Hawkins A.R., Lamb H.K., Roberts C.F. 1992; Structure of the Aspergillus nidulans qut repressor-encoding gene: implications for the regulation of transcription initiation. Gene 110:109–114
    [Google Scholar]
  25. Huyhn Q.K. 1987; Reaction of 5-enolpyruvylshikimate-3-phosphate synthase with diethyl pyrocarbonate: evidence for an essential histidine residue. Archives of Biochemistry and Biophysics 258:233–239
    [Google Scholar]
  26. Kovacs J.A., Powell F., Edman J.C., Lundgren B., Martinez A., Drew B., Angus C.W. 1993; Multiple genes encode the major surface glycoprotein of Pneumocystis carinii. Journal of Biological Chemistry 268:6034–6040
    [Google Scholar]
  27. Lamb H.K., Bagshaw C.R., Hawkins A.R. 1991; In vivo overproduction of the pentafunctional arom polypeptides in Aspergillus nidulans affects metabolic flux in the quinate pathway. Molecular and General Genetics 227:187–196
    [Google Scholar]
  28. Lamb H.K., Van Den Hombergh P.T.W., Newton G.H., Moore J.D., Roberts C.F., Hawkins A.R. 1992; Differential flux through the quinate and shikimate pathways: implications for the channelling hypothesis. Biochemical Journal 284:181–187
    [Google Scholar]
  29. Løbner-Oleson A., Marinus M.G. 1992; Identification of the gene (aroK) encoding shikimic acid kinase I of Escherichia coli. Journal of Bacteriology 174:525–529
    [Google Scholar]
  30. Millar G., Coggins J.R. 1986; The complete amino acid sequence of 3-dehydroquinate synthase of Escherichia coli K12. FEBS Letters 200:11–17
    [Google Scholar]
  31. Millar G., Lewendon A., Hunter M.G., Coggins J.R. 1986; The cloning and expression of the aroL gene from Escherichia coli K12. Biochemical Journal 237:427–437
    [Google Scholar]
  32. Padgette S.R., Biest Re D., Gasser C.S., Eichholtz D.A., Frazier R.B., Hironaka C.M., Levine E.B., Shah D.M., Fraley R.T., Kishore G.M. 1991; Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimate-3-phosphate synthase active site. Journal of Biological Chemistry 266:22364–22369
    [Google Scholar]
  33. Peters S.E., Wakefield A.E., Banerji S., Hopkin J.M. 1992; Quantification of the detection of Pneumocystis carinii by DNA amplification. Molecular and Cellular Probes 6:115–117
    [Google Scholar]
  34. Rossman M.G., Moras D., Olsen K.W. 1974; Chemical and biological evolution of a nucleotide binding protein. Nature; London: 250194–199
    [Google Scholar]
  35. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 745463–5467
    [Google Scholar]
  37. Strauss A. 1979; The genetic fine structure of the complex locus aro3 involved in early aromatic amino acid biosynthesis in Schizosaccharomyces pombe. Molecular and General Genetics 172233–241
    [Google Scholar]
  38. Tabor S., Richardson C.C. 1987; DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 844767–4771
    [Google Scholar]
  39. Volpe F., Dyer M., Scaife J.G., Darby G., Stammers D.K., Delves C.J. 1992; The multifunctional folic acid synthesis fas gene of Pneumocystis carinii appears to encode dihydropteroate synthase and hydroxymethyldihydropterin pyrophosphokinase. Gene 112:213–218
    [Google Scholar]
  40. Wakefield A.E., Hopkin J.M., Burns J., Hipkiss J.B., Stewart T.J., Moxon E.R. 1988; Cloning of DNA from Pneumocystis carinii. Journal of Infectious Diseases 158:859–862
    [Google Scholar]
  41. Wakefield A.E., Peters S.E., Banerji S., Bridge P.D., Hall G.S., Hawksworth D.L., Guiver L.A., Allen A.G., Hopkin J.M. 1992; Pneumocystis carinii shows DNA homology with the ustomycetous red yeast fungi. Molecular Microbiology 6:1903–1911
    [Google Scholar]
  42. Walker J.E., Saraste M., Runswick M.J., Gay N.J. 1982; Distantly related sequence in the α and β subunits of ATP synthase, myosin, kinases, and other ATP requiring enzymes and a common nucleotide binding fold. EMBO Journal 1:945–951
    [Google Scholar]
  43. Ympa-Wong M.F., Fonzi W.A., Sypherd P.S. 1992; Fungus-specific translation elongation factor 3 gene present in Pneumocystis carinii. Infection and Immunity 60:4140–4145
    [Google Scholar]
  44. Zhang J., Stringer J.R. 1993; Cloning and characterisation of an alpha-tubulin gene from rat derived P. carinii. Gene 123:137–141
    [Google Scholar]
/content/journal/micro/10.1099/00221287-139-12-2901
Loading
/content/journal/micro/10.1099/00221287-139-12-2901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error