1887

Abstract

(-)-Verrucosan-2β-ol (CHO), a rare diterpene with a 3,6,6,5-tetracyclic ring system, has been isolated and identified for the first time from the phototrophic bacterium Furthermore, an unsaturated diterpenoid hydrocarbon (CH) with a similar carbon skeleton was found in the same organism. This prokaryote, naturally occurring in hot spring microbial mats, is considered to be one of the oldest bacterial life forms on earth. Verrucosane-type diterpenoids had previously been detected only in some liverworts (), forming a unique group in the plant kingdom.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2757
1993-11-01
2021-10-20
Loading full text...

Full text loading...

References

  1. Bauld J., Brock T. D. 1973; Ecological studies of Chloroflexis, a gliding photosynthetic bacterium. Archives of Microbiology 92:267–284
    [Google Scholar]
  2. Bird C. W., Lynch J. M., Reid W. W. 1971; The identification of hop-22(29)-ene in prokaryotic organisms. Tetrahedron Letters 34:3189–3190
    [Google Scholar]
  3. Boon J. J., Hines H., Burlingame A. L., Klok J., Rijpastra I. C., De Leeuw J. W., Edmunds K. E., Eglinton G. 1981; Organic geochemical studies of Solar Lake laminated cyanobacterial mats. In Advances in Organic Geochemistry pp. 207–227 Bjory M. others Edited by Chichester: John Wiley;
    [Google Scholar]
  4. Boudou J. P., Trichet J., Robinson N., Brassel S. C. 1986; Lipid composition of a recent Polynesian microbial mat sequence. Organic Geochemistry 10:705–709
    [Google Scholar]
  5. Dobson G., Ward D. M., Robinson N., Eglinton G. 1988; Biogeochemistry of hot spring environments: extractable lipids of a cyanobacterial mat. Chemical Geology 68:155–179
    [Google Scholar]
  6. Doemel W. N., Brock T. D. 1974; Bacterial stromatolites: origin of laminations. Science 184:1083–1085
    [Google Scholar]
  7. Eguchi S., Matsuo A., Nakayama M., Takaoka D., Hayashi S. 1982; Mass spectra of some diterpenoids with the novel carbon skeletons verrucosane, neoverrucosane and homoverrucosane. Shitsuryo Bunseki 30:325–335
    [Google Scholar]
  8. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J., Zablen L. B., Blakemore R., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrsen K. R., Chen K. N., Woese C. R. 1980; The phylogeny of prokaryotes. Nature; London: 290457–463
    [Google Scholar]
  9. Fukuyama Y., Masuya T., Tori M., Kido M., Wakamatsu M., Asakawa Y. 1988; Verrucosane diterpene from the liverwort Plagiochila stephensoniana. Phytochemistry 27:1797–1799
    [Google Scholar]
  10. Gibson J., Ludwig W., Stackebrandt E., Woese C. R. 1985; The phylogeny of the green photosynthetic bacteria: absence of a close relationship between Chlorobium and Chloroflexus. Systematics and Applied Microbiology 6:152–156
    [Google Scholar]
  11. Gloe A., Risch N. 1978; Bacteriochlorophyll cs, a new bacteriochlorophyll from Chloroflexus aurantiacus. Archives of Microbiology 118:153–156
    [Google Scholar]
  12. Gorlenko V. M. 1975; Characteristics of filamentous phototrophic bacteria from freshwater lakes. Microbiology English translation of Mikrobiologiya 44:682–684
    [Google Scholar]
  13. Halfen L. N., Pierson B. K., Francis G. W. 1972; Carotenoids of a gliding organism containing bacteriochlorophylls. Archives of Microbiology 82:240–246
    [Google Scholar]
  14. Hefter J. 1992 Biogeochemie rezenter Mikrobialithe PhD Institut für Biogeochemie und Meereschemie; Universität Hamburg:
    [Google Scholar]
  15. Holo H., Sirevåg R. 1986; Autotrophic growth and CO2-fixation of Chloroflexus aurantiacus. Archives of Microbiology 145:173–180
    [Google Scholar]
  16. Jürgens U. J., Meissner J., Fischer U., König W. A., Weckesser J. 1987; Ornithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibriforme f.thiosulfatophilum. Archives of Microbiology 148:72–76
    [Google Scholar]
  17. Kandler O. 1981; Archaebakterien und Phylogenie der Organismen. Naturwissenschaften 68:183–192
    [Google Scholar]
  18. Kaulen H., Klemme J. H. 1983; No evidence of covalent modification of glutamine synthetase in the thermophilic phototrophic bacterium Chloroflexus aurantiacus. FEMS Microbiology Letters 20:75–79
    [Google Scholar]
  19. Knudsen E., Jantzen E., Bryn K., Ormerod J. G., Sirevåg R. 1982; Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Archives of Microbiology 132:149–154
    [Google Scholar]
  20. Kubo I., Matsumoto A., Hirotsu K., Naoki H., Wood W. F. 1984; Structure and the absolute configuration of a new diterpene, (—)-2(S),(R)-dihydroxyverrucosane, from the liverwort Gyrothyra underwoodiana. Journal of Organic Chemistry 49:4644–4646
    [Google Scholar]
  21. Madigan M. T., Petersen S. R., Brock T. D. 1974; Nutritional studies on Chloroflexus, a filamentous photosynthetic, gliding bacterium. Archives of Microbiology 100:97–103
    [Google Scholar]
  22. Matsuo A., Atsumi K., Nakayama M. 1984; Isolation of seven verrucosane diterpenoids from the liverwort Scapania bolanderi. Zeitschrift für Naturforschung 39b:1281–1285
    [Google Scholar]
  23. Meissner J., Krauss J. H., Jürgens U. J., Weckesser J. 1988; Absence of a characteristic cell wall lipopolysaccharide in the phototrophic bacterium Chloroflexus aurantiacus. Journal of Bacteriology 170:3213–3216
    [Google Scholar]
  24. Ourisson G., Albrecht P., Rohmer M. 1979; The hopanoids: palaeochemistry and biochemistry of a group of natural products. Pure and Applied Chemistry 51:709–729
    [Google Scholar]
  25. Pierson B. K., Castenholz R. W. 1991; The family Chloroflexaceae. In The Prokaryotes pp. 3754–3774 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. Edited by New York: Springer;
    [Google Scholar]
  26. Rohmer M., Bouvier-Nave P., Ourisson G. 1984; Distribution of hopanoid triterpenes in prokaryotes. Journal of General Microbiology 130:1137–1150
    [Google Scholar]
  27. Schidlowsky M., Matzigkeit U., Krumbein W. E. 1984; Superheavy organic carbon from hypersaline microbial mats. Naturwissenschaften 71:303–308
    [Google Scholar]
  28. Shiea J., Brassel S. C., Ward D. M. 1991; Comparative analysis of extractable lipids in hot spring microbial mats and their component photosynthetic bacteria. Organic Geochemistry 17:309–319
    [Google Scholar]
  29. Zeng Y. B., Ward D. M., Brassel S. C., Eglinton G. 1992a; Biogeochemistry of hot spring environments. 2. Lipid compositions of Yellowstone (Wyoming, U.S.A.) cyanobacterial and Chloroflexus mats. Chemical Geology 95:327–345
    [Google Scholar]
  30. Zeng Y. B., Ward D. M., Brassel S. C., Eglinton G. 1992b; Biogeochemistry of hot spring environments. 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat. Chemical Geology 95:347–360
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2757
Loading

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error