1887

Abstract

Three-hundred and twenty-six strains of pv. from 22 countries were studied to detect and assess genetic and evolutionary relationships within the pathovar. A range of techniques was used for this study including restriction fragment length polymorphism (RFLP) analysis. The probes used for the RFLP analysis were 16 + 23S rRNA genes from and three restriction fragments from the chromosomal and plasmid DNA of pv. Analysis of the rRNA probe data showed five RFLP groups whilst the other three probes were used to further sub-divide these groupings. Genetic variability of pv. was pronounced in strains from South America where the host plant originated but was limited in strains from other regions. The results obtained confirm the hypothesis that the pathogen has been introduced only recently to Africa and suggests that African strains have not as yet diversified significantly at the chromosomal level. Our results indicate that rRNA and DNA probes are useful tools for epidemiological studies and in following the genetic evolution of strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2591
1993-11-01
2022-06-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2591.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2591&mimeType=html&fmt=ahah

References

  1. Berthier Y., Verdier V., Guesdon J. L., Chevrier D., Denis J. B., Decoux G., Lemattre M. 1993; Characterization of Xanthomonas campestris pathovars by rRNA gene restriction patterns. Applied and Environmental Microbiology 59:851–859
    [Google Scholar]
  2. Bondar G. 1912; Um nova molestia bacteriana das hastes da mandioca. Chacaras e Quintaes 5:15–18
    [Google Scholar]
  3. Booth R. H., Lozano J. C. 1978; Cassava bacterial blight in South East Asia. Plant Disease Reporter 62:529–530
    [Google Scholar]
  4. Boucher C., Barberis P., Trigalet A., Demery D. 1985; Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. Journal of General Microbiology 131:2449–2457
    [Google Scholar]
  5. Cook D., Barlow E., Sequeira L. 1989; Genetic diversity of Pseudomonas solanacearum: detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response. Molecular Plant-Microbe Interactions 2:113–121
    [Google Scholar]
  6. Cook D., Barlow E., Sequeira L. 1991; DNA probes as tools for the study of host-pathogen evolution: the example of Pseudomonas solanacearum.. In Advances in Molecular Genetics of Plant-Microbe Interactions pp. 103–108 Hennecke H., Verma D.P.S. Edited by The Netherlands: Kluwer Academic Publishers;
    [Google Scholar]
  7. Coplin D. 1989; Plasmids and their role in the evolution of plant pathogenic bacteria. Annual Review of Phytopathology 27:187–212
    [Google Scholar]
  8. Denny T. P., Gilmour M. N., Selander R. K. 1988; Genetic diversity and relationships of two pathovars ofPseudomonas syringae.. Journal of General Microbiology 134:1949–1960
    [Google Scholar]
  9. Eberhard W. 1990; Evolution in bacterial plasmids and levels of selection. Quarterly Review of Biology 65:3–22
    [Google Scholar]
  10. Elango F., Lozano J. C. 1980; Transmission of Xanthomonas manihotis in seeds of cassava (Manihot esculenta). Plant Disease 64:784–786
    [Google Scholar]
  11. Gabriel D. W., Hunter J. E., Kingsley M. T., Miller J. W., Lazo G. R. 1988; Clonal population structure of Xanthomonas campestris and genetic diversity among citrus canker strains. Molecular Plant-Microbe Interactions 1:59–65
    [Google Scholar]
  12. Grimont F., Chevrier D., Grimont P.A.D., Lefevre M., Guesdon J. L. 1989; Acetylaminofluorene-labelled ribosomal RNA for use in molecular epidemiology and taxonomy. Annales de l’Institut Pasteur Microbiologie 140:447–454
    [Google Scholar]
  13. Grousson F., Pages J., Boher B. 1990; Etude de la variabilité d’un agent pathogène, Xanthomonas campestris pv.manihotis, par l’analyse factorielle multiple. Agronomie (Paris) 4:627–640
    [Google Scholar]
  14. Hartung J. S., Civerolo E. L. 1989; Restriction fragment length polymorphisms distinguish Xanthomonas campestris strains isolated from Florida citrus nurseries. Phytopathology 79:793–799
    [Google Scholar]
  15. Hayward A. C. 1964; Characteristics of Pseudomonas solanacearum.. Journal of Applied Bacteriology 27:265–277
    [Google Scholar]
  16. Kwage S. L. 1982; Bacterial blight on cassava. FAO Plant Protection Bulletin 30:82–83
    [Google Scholar]
  17. Lazo G. R., Gabriel D. W. 1987; Conservation of plasmid DNA sequences of pathovar identification of strains of Xanthomonas campestris.. Phytopathology 77:448–453
    [Google Scholar]
  18. Leach J. E., White F. F., Rhoads M. L., Leung H. 1990; A repetitive DNA sequence differentiates Xanthomonas campestris pv. oryzae from other pathovars of X. campestris.. Molecular Plant-Microbe Interactions 3:238–246
    [Google Scholar]
  19. Leach J. E., Rhoads M. L., Vera Cruz C. M., White F. F., Mew T. W., Leung H. 1992; Assessment of genetic diversity and population structure of Xanthomonas oryzae pv. oryzae with a repetitive DNA element. Applied and Environmental Microbiology 58:2188–2195
    [Google Scholar]
  20. Lefevre F. 1988; Ressources génétiques et amélioration du manioc, Manihot esculenta Crantz en Afrique. Thesis INA-PG, Paris, France.:
    [Google Scholar]
  21. Leonard K. J., Czochor R. J. 1980; Theory of genetic interactions among populations of plants and their pathogens. Annual Review of Phytopathology 18:237–258
    [Google Scholar]
  22. Lozano J. C., Sequeira L. 1974a; Bacterial blight of cassava in Colombia: etiology. Phytopathology 64:74–82
    [Google Scholar]
  23. Lozano J. C., Sequeira L. 1974b; Bacterial blight of cassava in Colombia: epidemiology and control. Phytopathology 64:83–88
    [Google Scholar]
  24. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Maraite H., Meyer J. A. 1975; Xanthomonas manihotis(Arthaud, Berthet) Starr causal agent of bacterial wilt and leaf spot of cassava in Zaïre. Proceedings of the National Academy of Sciences of the United States of America 21:27–37
    [Google Scholar]
  26. Maraite H., Weyns J., Yinkwan O., Lipembra P., Perreaux D. 1981; Physiological and pathogenic variations in Xanthomonas campestris pv. manihotis.. In:Proceedings of the Fifth International Conference on Plant Pathogenic Bacteria pp. 358–368 Cali, Colombia: CIAT;
    [Google Scholar]
  27. Miller J. C. 1992; Restsite: a phylogenetic program that sorts restriction data. Journal of Heredity 32:262–263
    [Google Scholar]
  28. Nei M. 1987 Molecular Evolutionary Genetics. New York: Columbia University Press;
    [Google Scholar]
  29. Pruvost O., Hartung J. S., Civerolo E. L., Dubois C., Perrier X. 1992; Plasmid DNA fingerprints distinguish pathotypes of Xanthomonas campestris pv. citri, the causal agent of citrus bacterial canker disease. Phytopathology 82:485–490
    [Google Scholar]
  30. Qhobela M., Claflin L. E. 1992; Eastern and Southern African strains of Xanthomonas campestris pv. vasculorum are distinguishable by restriction fragment length of DNA and polyacrylamide gel electrophoresis of membrane proteins. Plant Pathology 41:113–121
    [Google Scholar]
  31. Qhobela M., Claflin L. E., Nowell D. C. 1990; Evidence that Xanthomonas campestris pv. zeae can be distinguished from other pathovars capable of infecting maize by restriction fragment length polymorphism of genomic DNA. Canadian Journal of Plant Pathology 12:183–186
    [Google Scholar]
  32. Qhobela M., Leach J. E., Claflin L. E., Pearson D. L. 1991; Characterization of strains of Xanthomonas campestris pv. holcicola by PAGE of membrane proteins and by REA and RFLP analysis of genomic DNA. Plant Disease 75:32–36
    [Google Scholar]
  33. Scieux C., Grimont F., Regnault B., Grimont P.D.A. 1992; DNA fingerprinting of Chlamydia trachomatis by use of ribosomal RNA, oligonucleotide and randomly cloned DNA probes. Annales de l’Institut Pasteur Research in Microbiology 143:755–765
    [Google Scholar]
  34. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503
    [Google Scholar]
  35. Van Den Mooter M., Maraite H., Meiresonne L., Swings J., Gillis M., Kersters K., De Ley J. 1987; Comparison between Xanthomonas campestris pv. manihotis (ISPP List 1980) and X. campestris pv. cassavae (ISPP List 1980) by means of phenotypic, protein electrophoretic, DNA hybridization and phytopathological techniques. Journal of General Microbiology 133:57–71
    [Google Scholar]
  36. Vauterin L., Swings J., Kersters K. 1991; Grouping of Xanthomonas campestris pathovars by SDS-PAGE of proteins. Journal of General Microbiology 137:1677–1687
    [Google Scholar]
  37. Verdier V. 1988; Contribution à l’ètude de la variabilitè de Xanthomonas campestris pv. manihotis (Arthaud Berthet et Bondar) Starr agent causal de la bactériose vasculaire du manioc (Manihot esculentaCrantz). Thesis Universitè de Paris Sud, Orsay, France.:
    [Google Scholar]
  38. Williams R. J., Agboola S. D., Schneider R. W. 1973; Bacterial wilt of cassava in Nigeria. Plant Disease Reporter 57:824–827
    [Google Scholar]
  39. Xu G. W., Gonzales C. F. 1991; Plasmid, genomic, and bacteriocin diversity in US strains of Xanthomonas campestris pv. oryzae.. Phytopathology 81:628–631
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2591
Loading
/content/journal/micro/10.1099/00221287-139-11-2591
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error