1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2531
1993-11-01
2022-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2531.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2531&mimeType=html&fmt=ahah

References

  1. Argüelles J. C., Mbonyi K., Van Aelst L., Vanhalewyn M., Jans A. W. H., Thevelein J. M. 1990; Absence of glucoseinduced cAMP signalling in the Saccharomyces cerevisiae mutants catl and cat3 which are deficient in derepression of glucose-repressible proteins. Archives of Microbiology 154:199–205
    [Google Scholar]
  2. Arndt K. T., Styles C. A., Fink G. R. 1989; A suppressor of a HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases. Cell 56:527–537
    [Google Scholar]
  3. Bahman M., Buck V., White A., Rosamond J. 1988; Characterization of the CDC7 gene product of Saccharomyces cerevisiae as a protein kinase needed for the initiation of mitotic DNA synthesis. Biochimica et Biophysica Acta 951:335–343
    [Google Scholar]
  4. Barker D. G., Johnston L. H. 1983; Saccharomyces cerevisiae CDC9, a structural gene for DNA ligase which complements Schizosaccharomyces pombe cdcl7. European Journal of Biochemistry 134:315–319
    [Google Scholar]
  5. Baroni M. D., Monti P., Marconi G., Alberghina L. 1992; cAMP-mediated increase in the critical cell size required for the GI to S transition in Saccharomyces cerevisiae. Experimental Cell Research 201:299–306
    [Google Scholar]
  6. Beullens M., Mbonyi K., Geerts L., Gladines D., Detremerie K., Jans A. W. H., Thevelein J. M. 1988; Studies on the mechanism of the glucose-induced cAMP-signal in glycolysis- and glucose repression-mutants of the yeast Saccharomyces cerevisiae. European Journal of Biochemistry 172:227–231
    [Google Scholar]
  7. Breeden L., Mikesell G. E. 1991; Cell cycle-specific expression of the SWI4 transcription factor is required for the cell cycle regulation of HO transcription. Genes and Development 5:1183–1190
    [Google Scholar]
  8. Breeden L., Nasmyth K. 1987; Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell 48:389–397
    [Google Scholar]
  9. Brenner C., Nakayama N., Goebl M., Tanaka K., Toh-E A., Matsumoto K. 1988; CDC33 encodes mRNA cap-binding protein eIF-4E of Saccharomyces cerevisiae. Molecular and Cellular Biology 8:3556–3559
    [Google Scholar]
  10. Broach J. R., Pringle J.R, Jones E. W. 1991 The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  11. Caligiuri M., Beach D. 1993; Sct1 functions in partnership with CdclO in a transcription complex that activates cell cycle START and inhibits differentiation. Cell 72:607–619
    [Google Scholar]
  12. Cannon J. F., Gitan R., Tatchell K. 1990; Yeast cAMP-dependent protein kinase regulatory subunit mutations display a variety of phenotypes. Journal of Biological Chemistry 265:11897–11904
    [Google Scholar]
  13. Chapman J. W., Johnston L. H. 1989; The yeast gene, DBF4, essential for entry into S phase is cell cycle regulated. Experimental Cell Research 180:419–428
    [Google Scholar]
  14. Collart M. A., Struhl K. 1993; CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters. EMBO Journal 12:177–186
    [Google Scholar]
  15. Cross F. 1988; DAF1, a mutant gene affecting size control, pheromone arrest and cell cycle kinetics of S. cerevisiae. Molecular and Cellular Biology 8:4675–4684
    [Google Scholar]
  16. Cross F., Tinkelenberg A. H. 1991; A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the cell cycle. Cell 65:875–883
    [Google Scholar]
  17. Dirick L., Nasmyth K. 1991; Positive feedback in the activation of G1 cyclins in yeast. Nature; London: 351754–757
    [Google Scholar]
  18. Dirick L., Moll T., Auer H., Nasymth K. 1992; A central role for SWI6 in modulating cell cycle START-specific transcription in yeast. Nature; London: 357508–513
    [Google Scholar]
  19. Dumont J. E., Jauniaux J. C., Roger P. P. 1989; The cyclic AMP-mediated stimulation of cell proliferation. Trends in Biochemical Sciences 14:67–71
    [Google Scholar]
  20. Fernandez-Sarabia M. J., Sutton A., Zhong T., Arndt K. T. 1992; SIT4 protein phosphatase is required for the normal accumulation of SW14, CLN1, CLN2, and HCS26 RNAs during late G1. Genes and Development 6:2417–2428
    [Google Scholar]
  21. Forsburg S. L., Nurse P. 1991; Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Annual Review of Cell Biology 7:227–256
    [Google Scholar]
  22. Francois J., Van Schaftingen E., Hers H. G. 1984; The mechanism by which glucose increases fructose-2,6-bisphosphate concentration in Saccharomyces cerevisiae A cyclic-AMP-dependent activation of phosphofructokinase 2. European Journal of Biochemistry147187–193
    [Google Scholar]
  23. Garrett S., Broach J. 1989; Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAK1, whose product may act downstream of the cAMP- dependent protein kinase. Genes and Development 3:1336–1348
    [Google Scholar]
  24. Garrett S., Menold M. M., Broach J. R. 1991; The Saccharomyces cerevisiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Molecular and Cellular Biology 11:4045–4052
    [Google Scholar]
  25. Gibbs J. B., Marshall M. S. 1989; The ras oncogene-an important regulatory element in lower eucaryotic organisms. Microbiological Reviews 53:171–185
    [Google Scholar]
  26. Hadwiger J. A., Wittenberg C., Richardson H. E., Lopes M.DE B., Reed S. I. 1989; A family of cyclin homologs that control the Gl phase in yeast. Proceedings of the National Academy of Sciences of the United States of America 86:6255–6259
    [Google Scholar]
  27. Herskowitz I. 1989; A regulatory hierarchy for cell specialization in yeast. Nature; London: 342749–757
    [Google Scholar]
  28. Hirimburegama K., Durnez P., Keleman J., Oris E., Vergauwen R., Mergelsberg H., Thevelein J. M. 1992; Nutrient induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. Journal of General Microbiology 138:2035–2043
    [Google Scholar]
  29. Hirsch J. P., Cross F. R. 1992; Pheromone response in yeast. BioEssays 14:367–373
    [Google Scholar]
  30. Hollingsworth R. E. Jr Sclafani R. A. 1990; DNA metabolism gene CDC7 from yeast encodes a serine (threonine) protein kinase. Proceedings of the National Academy of Sciences of the United States of America 87:6272–6276
    [Google Scholar]
  31. Hohmann S., Thevelein J. M. 1992; The cell division cycle gene encodes cytosolic leucyl-tRNA synthetase in Saccharomyces cerevisiae. Gene 120:43–49
    [Google Scholar]
  32. Jackson A. L., Pahl P. M. B., Harrison K., Rosamond J., Sclafani R. A. 1993; Cell cycle regulation of the yeast CDC7 protein kinase by association with the DBF4 protein. Molecular and Cellular Biology 13:2899–2908
    [Google Scholar]
  33. Johnston L. H. 1990; Periodic events in the cell cycle. Current Opinion in Cell Biology 2:274–279
    [Google Scholar]
  34. Johnston L. H., Lowndes N. F. 1992; Cell cycle control of DNA synthesis in budding yeast. Nucleic Acids Research 20:2403–2410
    [Google Scholar]
  35. Johnston L. H., Thomas A. P. 1982; A further two mutants defective in the initiation of the S phase in the yeast Saccharomyces cerevisiae. Molecular and General Genetics 186:445–448
    [Google Scholar]
  36. Kitada K., Johnston L. H., Sugino T., Sugino A. 1992; Temperature sensitive CDC7 mutations of Saccharomyces cerevisiae are suppressed by the DBF4 gene, which is required for the G1/S phase transition. Genetics 131:21–29
    [Google Scholar]
  37. Kurjan J. 1992; Pheromone response in yeast. Annual Review of Biochemistry 61:1097–1129
    [Google Scholar]
  38. Lew D. J., Reed S. I. 1992; A proliferation of cyclins. Trends in Cell Biology 2:77–80
    [Google Scholar]
  39. Lew D. J., Marini M. J., Reed S. I. 1992; Different G1 cyclins control the timing of the cell cycle commitment in mother and daughter cells of the budding yeast S. cerevisiae. Cell 69:317–327
    [Google Scholar]
  40. Lew D. J., Marini M. J., Reed S. I. 1993; A suppressor of cln3 for size control. Cell 72:488–489
    [Google Scholar]
  41. Linder P., Prat A. 1990; Baker’s yeast, the new workhorse in protein synthesis studies - analyzing eukaryotic translation initiation. BioEssays 12:519–526
    [Google Scholar]
  42. Linskens M., Tyers M., Futcher B. 1993; CLN3 functions in both daughter and mother cells of S. cerevisiae. Cell 72:487
    [Google Scholar]
  43. Lowndes N., Johnson A., Breeden L., Johnston L. 1992a; SW16 protein is required for transcription of the periodically expressed DNA synthesis genes in budding yeast. Nature; London: 357505–508
    [Google Scholar]
  44. Lowndes N., Mcinerney C., Johnson A., Fantes P., Johnston L. 1992b; Control of DNA synthesis genes in fission yeast by the cell cycle gene cdcl0+. Nature; London: 355449–453
    [Google Scholar]
  45. Marini N. J., Reed S. I. 1992; Direct induction of G1 specific transcripts following reactivation of the CDC28 kinase in the absence of de novo protein synthesis. Genes and Development 6:557–567
    [Google Scholar]
  46. Mbonyi K., Van AELST L., Argüelles J. C., Jans A. W. H., Thevelein J. M. 1990; Glucose-induced hyperaccumulation of cAMP and absence of glucose repression in yeast strains with reduced activity of cAMP-dependent protein kinase. Molecular and Cellular Biology 10:4518–4523
    [Google Scholar]
  47. Mcintosh E.M, Gadsen M. H., Haynes R. H. 1986; Transcription of genes encoding enzymes involved in DNA synthesis during the cell cycle of Saccharomyces cerevisiae. Molecular and General Genetics 204:363–366
    [Google Scholar]
  48. Mckinney J., Cross F. 1992; A switch-hitter at the Start of the cell cycle. Current Biology 2:421–423
    [Google Scholar]
  49. Mendenhall M. D., Jones C. A., Reed S. I. 1987; Dual regulation of the yeast CDC28-p40 protein kinase complex: cell cycle, pheromone and nutrient limitation effects. Cell 50:927–935
    [Google Scholar]
  50. Merrill G. F., Morgan B. A., Lowndes N. F., Johnston L. H. 1992; DNA synthesis control in yeast: an evolutionarily conserved mechanism for regulating DNA synthesis genes?. BioEssays 14:823–830
    [Google Scholar]
  51. Nasmyth K. 1990; FAR-reaching discoveries about the regulation of start. Cell 62:1117–1120
    [Google Scholar]
  52. Nasmyth K., Dirick L. 1991; The role of SW14 and SW16 in the activity of G1 cyclins in yeast. Cell 66:995–1013
    [Google Scholar]
  53. Neiman A. M., Chang F., Komachi K., Herskowitz I. 1990; CDC36 and CDC39 are negative elements in the signal transduction pathway of yeast. Cell Regulation 1:391–401
    [Google Scholar]
  54. Newlon C. S. 1988; Yeast chromosome replication and segregation. Microbiological Reviews 52:568–601
    [Google Scholar]
  55. Nikawa J., Sass P., Wigler M. 1987; Cloning and characterization of the low affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Molecular and Cellular Biology 7:3629–3636
    [Google Scholar]
  56. Nurse P. 1990; Universal control mechanism regulating onset of M-phase. Nature; London: 344503–508
    [Google Scholar]
  57. Ogas J., Andrews B. J., Herskowitz I. 1991; Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SW14, a positive regulator of G1-specific transcription. Cell 66:1015–1026
    [Google Scholar]
  58. Patterson M., Sclafani R. A., Fangman W. L., Rosamond J. 1986; Molecular characterization of cell cycle gene CDC7 from Saccharomyces cerevisiae. Molecular and Cell Biology 6:1590–1598
    [Google Scholar]
  59. Primig M., Sockanathan S., Auer H., Nasmyth K. 1992; Anatomy of a transcription factor important for the Start of the cell cycle in Saccharomyces cerevisiae. Nature; London: 358593–597
    [Google Scholar]
  60. Pringle J. R., Hartwell L. H. 1981; The S. cerevisiae cell cycle. In The Molecular Biology of the Yeast Saccharomyces cerevisiae: Life Cycle and Inheritance pp. 97–142 Strathem J. D., Jones E. W., Broach J. R. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  61. Reed S. I., Wittenberg C. 1990; Mitotic role for the CDC28 protein kinase of S. cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 87:5697–5701
    [Google Scholar]
  62. Reed S. I., Hadwiger J. A., Lorincz A. T. 1985; Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. Proceedings of the National Academy of Sciences of the United States of America 82:4055–4059
    [Google Scholar]
  63. Richardson H. E., Wittenberg C., Cross F., Reed S. I. 1989; An essential G1 function for cyclin like proteins in yeast. Cell 59:1127–1133
    [Google Scholar]
  64. Rita M., Taba M., Murof I., Lydall D., Tebb G., Nasmyth K. 1991; Changes in a SW14,6-DNA-binding complex occur at the time of HO gene activation in yeast. Genes and Development 5:2000–2013
    [Google Scholar]
  65. Sclafani R. A., Patterson M., Rosamond J., Fangman W. L. 1988; Differential regulation of the yeast CDC7 gene during mitosis and meiosis. Molecular and Cellular Biology 8:293–300
    [Google Scholar]
  66. Smith S. A., Kumar P., Johnston I., Rosamond J. 1992; SCM4, a gene that suppresses mutant cdc4 function in budding yeast. Molecular and General Genetics 235:285–291
    [Google Scholar]
  67. Song O. -K., Dolan J. W., Yuan Y. -L., Fields S. 1991; Pheromone-dependent phosphorylation of the yeast STE12 protein correlates with transcriptional activation. Genes and Development 5:741–750
    [Google Scholar]
  68. Sprague G. F. Jr 1991; Signal transduction in yeast mating. Trends in Genetics 7:393–398
    [Google Scholar]
  69. Storms R. K., Ord R. W., Greenwood M. T., Mirdamadi B., Chu F., Belfort M. 1984; Cell cycle dependent expression of thymidylate synthase in Saccharomyces cerevisiae. Molecular and Cellular Biology 4:2858–2864
    [Google Scholar]
  70. Sutton A., Immanuel D., Arndt K. T. 1991; The SIT4 protein phosphatase functions in late G1 for progression into S phase. Molecular and Cellular Biology 11:2133–2148
    [Google Scholar]
  71. Tanaka K., Matsumoto K., Toh-E A. 1989; IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Molecular and Cellular Biology 9:757–768
    [Google Scholar]
  72. Tanaka K., Nakafuku M., Satoh T., Marshall M. S., Gibbs J. B., Matsumoto K., Kaziro Y., Toh-E A. 1990; S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase-activating protein. Cell 60:803–807
    [Google Scholar]
  73. Tanaka K., Okazaki K., Okazaki N., Ueda T., Sugiyama A., Nojima H., Okayama H. 1992; A new cdc gene required for S phase entry of Schizosaccharomyces pombe encodes a protein similar to the cdcl0+ and SW14 gene products. EMBO Journal 11:4923–4932
    [Google Scholar]
  74. Thevelein J. M. 1991; Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient induced cell cycle control. Molecular Microbiology 5:1301–1307
    [Google Scholar]
  75. Thevelein J. M. 1992; The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 62:109–130
    [Google Scholar]
  76. Toda T., Cameron S., Sass P., Zoller M., Scott J. D., Mcbullen B., Hurwitz M., Krebs E. G., Wigler M. 1987a; Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP dependent protein kinase in Saccharomyces cerevisiae. Molecular and Cellular Biology 7:1371–1377
    [Google Scholar]
  77. Toda T., Cameron S., Sass P., Zoller M., Wigler M. 1987b; Three different genes in Saccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287
    [Google Scholar]
  78. Toda T., Cameron S., Sass P., Wigler M. 1988; SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to cAMP-dependent protein kinase catalytic subunits. Genes and Development 2:517–527
    [Google Scholar]
  79. Tyers M., Tokiwa G., Nash R., Futcher A. B. 1992; The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO Journal 11:1773–1784
    [Google Scholar]
  80. Tyers M., Tokiwa G., Futcher B. 1993; Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO Journal 12:1955–1968
    [Google Scholar]
  81. Unger M. W., Hartwell L. H. 1976; Control of cell division in Saccharomyces cerevisiae by methionyl-tRNA. Proceedings of the National Academy of Sciences of the United States of America 73:1664–1668
    [Google Scholar]
  82. White J. H. M., Barker D. G., Nurse P., Johnston L. H. 1986; Periodic transcription as a means of regulating gene expression during the cell cycle: contrasting modes of expression of DNA ligase genes in budding and fission yeast. EMBO Journal 5:1705–1709
    [Google Scholar]
  83. Wittenberg C., Sugimoto K., Reed S. I. 1990; G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62:225–237
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2531
Loading
/content/journal/micro/10.1099/00221287-139-11-2531
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error