1887

Abstract

Two strains of serogroup 1 monoclonal subgroup Pontiac were grown for the first time in continuous culture using a chemically defined medium. The influence of temperature on physiology and morphology was investigated by fixing the growth rate (equal to the dilution rate, ) at 0.08 h and controlling the pH and dissolved oxygen concentration of the culture. Serine provided the principal source of carbon and energy but growth was limited by tyrosine. The bacterium behaved as a microaerophile in this medium, with maximal growth occurring at 0.31 (mg O) I (equivalent to a dissolved oxygen tension of 4% (v/v) air saturation at 30 °C). The cultures consisted of flagellated, short rods at 24 °C, but exhibited an increased level of pleomorphism and the loss of flagella as the temperature was increased to 37°C. The presence of intracellular granules was noted, and their abundance was temperature-dependent. Polyhydroxybutyrate was present in , and the proportion of the cell dry weight that it accounted for varied with temperature, being maximal at 24 °C. The ratio of saturated to unsaturated fatty acids in the cells decreased as the temperature was reduced towards 24 °, so as to maintain membrane fluidity at low growth temperature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-11-2371
1992-11-01
2021-09-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/11/mic-138-11-2371.html?itemId=/content/journal/micro/10.1099/00221287-138-11-2371&mimeType=html&fmt=ahah

References

  1. Anand C. M., Skinner A. R., Malic A., Kurtz J. B. 1983; Interaction of L. pneumophila and a free living amoeba (Acanthamoeba palestinensis). Journal of Hygiene, Cambridge 91:167–178
    [Google Scholar]
  2. Berg J. O., Hoff J. C., Roberts P. V., Matin A. 1985; Growth of Legionella pneumophila in continuous culture. Applied and Environmental Microbiology 49:1534–1537
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37:911–917
    [Google Scholar]
  4. Brown C. M., Hough J. S. 1965; Elongation of yeast cells in continuous culture. Nature, London 206:676–678
    [Google Scholar]
  5. Burdon K. L. 1946; Fatty acid material in bacteria revealed by staining dried, fixed slide preparations. Journal of Bacteriology 52:665
    [Google Scholar]
  6. Chandler F. W., Blackmon J. A., Hicklin M. O., Cole R. M., Callaway C. S. 1979; Ultrastructure of the agent of Legionnaires’ disease in the human lung. American Journal of Clinical Pathology 71:43–50
    [Google Scholar]
  7. Chapman O., Williams R. M., Ladbrook B. D. 1967; Physical studies of phospholipids. Chemistry and Physics of Lipids 1:445–476
    [Google Scholar]
  8. Dawes E. A., Senior P. J. 1973; The role and regulation of energy reserve polymers in microorganisms. Advances in Microbial Physiology 10:135–266
    [Google Scholar]
  9. Dennis P. J. 1986 Environmental factors affecting the survival and the pathogenicity of Legionella pneumophila. PhD thesis University of Warwick, UK;
    [Google Scholar]
  10. Dennis P. J., Taylor J. A., Fitzgeorge R. B., Barlett C. L. R., Barrow G. I. 1982; Legionella pneumophila in water plumbing systems. Lancet 1:949–951
    [Google Scholar]
  11. Dennis P. J., Green I., Jones B. P. C. 1984; A note on the temperature tolerance of Legionella. Journal of Applied Bacteriology 56:349–350
    [Google Scholar]
  12. Edelstein P.H. 1981; Improved semi-selective medium for isolation of Legionella pneumophila from contaminated clinical and environmental specimens. Journal of Clinical Microbiology 14:298–303
    [Google Scholar]
  13. Feeley J. C., Gorman G. W., Weaver R. E., Mackel O. C., Smith H. W. 1978; Primary isolation media for Legionnaires’ disease bacterium. Journal of Clinical Microbiology 8:320–325
    [Google Scholar]
  14. Fields B. S., Barbaree J.M., Shotts E. B., Feeley J.C., Morill W. E., Sanden G. N., Dykstra M. J. 1986; Comparison of guinea pig and protozoan models for determining virulence of Legionella species. Infection and Immunity 53:553–559
    [Google Scholar]
  15. Findlay R.H., White O. C. 1983; Polymeric beta-hydroxyalkan-oates from environmental samples and Bacillus megaterium. Applied and Environmental Microbiology 45:71–78
    [Google Scholar]
  16. Fliermans C. B., Cherry W. B., Orrison L. H., Smith S. J., Tison D. L., Pope D. H. 1981; Ecological distribution of Legionella pneumophila. Applied and Environmental Microbiology 41:9–16
    [Google Scholar]
  17. George J. R., Pine L., Reeves M. W., Harrell W. K. 1980; Amino acid requirements of Legionella pneumophila. Journal of Clinical Microbiology 11:286–291
    [Google Scholar]
  18. Halper L. A., Norton S. J. 1975; Regulation of cyclopropane fatty acid biosynthesis by variation in enzyme activities. Biochemical and Biophysical Research Communications 62:683–688
    [Google Scholar]
  19. Herbert D. 1961; The chemical composition of micro-organisms as a function of their environment. Symposia of the Society for General Microbiology 11:391–416
    [Google Scholar]
  20. Herbert O., Elsworth R., Telling R. C. 1956; The continuous culture of bacteria: a theoretical and experimental study. Journal of General Microbiology 14:601–622
    [Google Scholar]
  21. Hoffman P. 1984 Bacterial physiology. In Proceedings of the 2nd International Symposium on Legionella, pp. 61–67 Edited by Thornsberry C., Balows A., Feeley J.C., Jakubowski W. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Keevil C. W., Glenister D. A., Salamon K. E., Dennis P. J., West A. A. 1988 A continuous culture biofilm model for the study of medical and industrial corrosion. In Biofilms, pp. 48–62 Edited by Morton L. H. G., Chamberlain A.H.L. Kew: Biodeterioration Society Press;
    [Google Scholar]
  23. Locksley R. M., Jacobs R. F., Wilson C. B., Weaver W. M., Klebanoff S. J. 1982; Susceptibility of Legionella pneumophila to oxygen-dependent microbiocidal systems. Journal of Immunology 129:2192–2197
    [Google Scholar]
  24. Mauchline W. S., Keevil C. W. 1991; Development of the BIOLOG substrate utilisation system for identification of Legionella spp. Applied and Enviranmental Microbiology 57:3345–3349
    [Google Scholar]
  25. Melchoir D. L. 1982; Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Current Topics in Membranes and Transport 17:263–316
    [Google Scholar]
  26. Monod J. 1950; La technique de culture continue; théorie et applications. Annales de l’Institut Pasteur 79:390–410
    [Google Scholar]
  27. Moss C. W., Weaver R. E., Dees S. B., Cherry W. B. 1977; Cellular fatty acid compositions of isolates from Legionnaires’ disease. Journal of Clinical Microbiology 6:140–143
    [Google Scholar]
  28. Moss C. W., Bibb W. F., Karr D. E., Guerrant G. O., Lambert M. A. 1983; Cellular fatty acid composition and ubiquinone content of Legionella feeleii sp. nov. Journal of Clinical Microbiology 18:917–919
    [Google Scholar]
  29. Novick A., Szilard L. 1950; Experiments with the Chemostat on spontaneous mutations of bacteria. Proceedings of the National Academy of Sciences of the United States of America 36708–719
    [Google Scholar]
  30. Ott M., Messner P., Heesemann J., Marre R., Hacker J. 1991; Temperature-dependent expression of flagella in Legionella. Journal of General Microbiology 137:1955–1961
    [Google Scholar]
  31. Pine L., George J. R., Reeves M. W., Harrell W. K. 1979; Development of a chemically defined medium for growth of Legionella pneumophila. Journal of Clinical Microbiology 9:615–626
    [Google Scholar]
  32. Pine L., Hoffman P. S., Malcom G. S., Benson R. F., Franzus M. J. 1966; Role of keto acids and reduced oxygen scavenging enzymes in the growth of Legionella species. Journal of Clinical Microbiology 23:33–42
    [Google Scholar]
  33. Rilfors L., Wieslander A., Stahl S. 1978; Lipid and protein composition of membranes of Bacillus megaterium variants in the temperature range 5-70 °C. Journal of Bacteriology 135:1043–1052
    [Google Scholar]
  34. Ristroph J. O., Hedlund K. W., Gowda S. 1981; Chemically defined medium for Legionella pneumophila growth. Journal of Clinical Microbiology 13:115–119
    [Google Scholar]
  35. Rodgers F. G. 1979; Ultrastructure of Legionella pneumophila. Journal of Clinical Pathology 32:1195–1202
    [Google Scholar]
  36. Rodgers F. G., Greaves P. W., Macrae A. D., Lewis M. J. 1980; Electron microscopy evidence of flagella and pili on Legionella pneumophila. Journal of Clinical Pathology 33:1184–1188
    [Google Scholar]
  37. Rowbotham T. C. 1980; Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. Journal of Clinical Pathology 33:1179–1183
    [Google Scholar]
  38. Rowbotham T. C. 1984 Legionellae and amoebae. In Proceedings of the 2nd International Symposium on Legionellae, pp. 325–327 Edited by Thornsberry C., Balows A., Feeley J. C., Jakubowski W. Washington DC: American Society of Microbiology;
    [Google Scholar]
  39. Slepecky R. A., Law J. H. 1960; A rapid spectrophotometric assay of alpha, beta-unsaturated acids and beta-hydroxy acids. Analytical Chemistry 32:1697–1699
    [Google Scholar]
  40. Tesh M. J., Miller R. D. 1981; Amino acids requirements for Legionella pneumophila growth. Journal of Clinical Microbiology 13:865–869
    [Google Scholar]
  41. Thiéry J. P. 1967; Role de l’appareil de golgi dans la synthese des mucopolysaccharides etude cytochimique. Journal de Microscopie (Paris) 8:689–708
    [Google Scholar]
  42. WAdowsky R. M., Wolford R., Mcnamara A. M., Yee R. B. 1986; Effect of temperature, pH and oxygen level on the multiplication of naturally occurring Legionella pneumophila in potable water. Applied and Environmental Microbiology 49:1197–1205
    [Google Scholar]
  43. Wait R. 1988 Confirmation of the identity of legionellae by whole cell fatty-acid and isoprenoid quinone profiles. In A Laboratory Manual for Legionella, pp. 69–102 Edited by Harrison T. G., Taylor A. G. Chichester: John Wiley and Sons;
    [Google Scholar]
  44. Wase D. A. J., Nesaratam S. T., Blakebrough N. 1982; Variation of cell wall strength in Klebsiella pneumoniae N CTC 418 with change in agitation speed in a chemostat system. Journal of Chemical Technology and Biotechnology 32:553–555
    [Google Scholar]
  45. West A. A., Araujo R., Dennis P. J. L., Lee J. V., Keevil C. W. 1989 Chemostat models of Legionella pneumophila. In Airborne Deteriogens and Pathogens, pp. 107–116 Edited by Flannigan B. Kew: Biodeterioration Society Press;
    [Google Scholar]
  46. Wilkinson D. A., Nagle J. F. 1981; Dilatometry and calorimetry of saturated phosphatidylethanolamine. Biochemistry 20:187–192
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-11-2371
Loading
/content/journal/micro/10.1099/00221287-138-11-2371
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error