1887

Abstract

Motility of the alkalophilic sp. C-125, a flagellate bacterium, was demonstrated to be Na- and pH-dependent. Flagellin protein from this strain was purified to homogeneity and the N-terminal sequence determined. Using the gene of as a probe, the gene of sp. C-125 was identified and cloned into . Sequencing of this gene revealed that it encodes a protein of 272 amino acids ( 29995). The predicted N terminal sequence of this protein was identical to that determined by N-terminal sequencing of the flagellin protein from strain C-125. The alkalophilic sp. C-125 flagellin shares homology with other known flagellins in both the N- and C-terminal regions. The middle portion, however, shows considerable differences, even from that of flagellin from the related species, .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-10-2159
1992-10-01
2021-05-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/10/mic-138-10-2159.html?itemId=/content/journal/micro/10.1099/00221287-138-10-2159&mimeType=html&fmt=ahah

References

  1. Asakura S., , Eguchi G., & Iino T. 1964; Reconstruction of bacterial flagella. Journal of Molecular Biology 10:42–56
    [Google Scholar]
  2. Blair D. F., & Berg H. C. 1990; The motA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60:439–449
    [Google Scholar]
  3. Dean G. E., , Macnab R. M., , Stader J., , Matsumura P., & Burks C. 1984; Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli . Journal of Bacteriology 159:991–999
    [Google Scholar]
  4. Edman P., & Henschen A. 1975 Sequence determination. In Protein Sequence Determination, , 2nd edn. pp. 232–279 Edited by Needleman S. B. Berlin: Springer-Verlag;
    [Google Scholar]
  5. Gill P. R., & Agabian N. 1983; The nucleotide sequence of the M r = 28,000 flagellin gene of Caulobacter crescentus . Journal of Biological Chemistry 258:7395–7401
    [Google Scholar]
  6. Guffanti A. A., & Eisenstein H. C. 1983; Purification and characterization of flagella from the alkalophilic Bacillus firmus RAB. Journal of General Microbiology 129:3239–3242
    [Google Scholar]
  7. Hirota N., , Kitada M., & Imae Y. 1981; Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Letters 132:278–280
    [Google Scholar]
  8. Homma M., , Fujita H., , Tamaguchi S., & Iino T. 1987; Regions of Salmonella typhimurium flagellin essential for its polymerisation and excretion. Journal of Bacteriology 169:291–296
    [Google Scholar]
  9. Honda H., , Kuoo T., , Ikura Y., & Horikoshi K. 1985; Two kinds of xylanases of alkalophilic Bacillus sp. No. C-125. Canadian Journal of Microbiology 31:538–542
    [Google Scholar]
  10. Iino T. 1977; Genetics of structure and functions of bacterial flagella. Annual Review of Genetics 11:161–182
    [Google Scholar]
  11. Joys T. M. 1985; The covalent structure of the phase-I flagellar filament protein of Salmonella typhimurium and its comparisons with other flagellins. Journal of Biological Chemistry 260:15758–15761
    [Google Scholar]
  12. Kamiya R., & Asakura S. 1976; Helical transformations of Salmonella flagella in vitro . Journal of Molecular Biology 106:167–186
    [Google Scholar]
  13. Kanto S., , Okino H., & Aizawa S.J. 1991; Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. Journal of Molecular Biology 219:471–480
    [Google Scholar]
  14. Kuoo T., , Hino M., , Kitada M., & Horikoshi K. 1990; DNA sequences required for the alkalophily of Bacillus sp. C-125 are located close together on its chromosomal DNA. Journal of Bacteriology 172:7282–7283
    [Google Scholar]
  15. Kuwajima G., , Asaka J., , Fujiwara T., , Fujiwara T., , Node K., & Kondo E. 1986; Nucleotide sequence of the hag gene encoding flagellin of Escherichia coli . Journal of Bacteriology 168:1479–1483
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 221, 680–685
    [Google Scholar]
  17. Lavallie E. R., & Stahl M. L. 1989; Cloning of the flagellin gene from Bacillus subtilis and complementation studies of an in vitro-derived deletion mutation. Journal of Bacteriology 171:3085–3094
    [Google Scholar]
  18. Logan S. M., , Harris L. A., & Trust T. J. 1987; Isolation and characterization of Campylobacter flagellins. Journal of Bacteriology 169:5072–5077
    [Google Scholar]
  19. Macnab R. M., & Aizawa S.-I. 1984; Bacterial motility and the bacterial flagellar motor. Annual Review of Biophysics and Bioengin-eering 13:51–83
    [Google Scholar]
  20. Martin J. H., & Savage D. C. 1988; Cloning, nucleotide sequence, and taxonomic implications of the flagellin gene of Roseburia cecicola . Journal of Bacteriology 170:2612–2617
    [Google Scholar]
  21. Martinez R. J. 1963; A method for the purification of bacterial flagella by ion exchange chromatography. Journal of General Microbiology 33:115–120
    [Google Scholar]
  22. Mirel D. B., & Chamberlin M. J. 1989; The Bacillus subtilis flagellin gene (hag) is transcribed by the a 28 form of RNA polymerase. Journal of Bacteriology 171:3095–3101
    [Google Scholar]
  23. Namba K., , Yamashita I., & Vonderviszt F. 1989; Structure of the core and central channel of bacterial flagella. Nature, London 342:648–654
    [Google Scholar]
  24. Ridgeway H.F., , Silverman M., & Simon M. I. 1977; Localization of proteins controlling motility and chemotaxis in Escherichia coli . Journal of Bacteriology 132:657–665
    [Google Scholar]
  25. Saito H., & Miura K. 1963; Preparation of transforming DNA by phenol treatment. Biochimica et Biophysica Acta 72:619–629
    [Google Scholar]
  26. Sambrook J., , Fritsch E. F., & Maniatis T. 1989 Molecular Cloning, , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Sanger F., , Nicklen S., & Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 745463–5467
    [Google Scholar]
  28. Silverman M., & Simon M. 1977; Bacterial flagella. Annual Review of Microbiology 31:397–419
    [Google Scholar]
  29. Sugiyama S., , Cragoe E. J., & Imae Y. 1988; Amiloride, a specific inhibitor for the Na+ -driven flagellar motors of alkalophilic Bacillus . Journal of Biological Chemistry 263:8215–8219
    [Google Scholar]
  30. Trachtenberg S., & Derosier D. J. 1988; Three-dimensional reconstruction of the flagellar filament of Caulobacter crescentus . Journal of Molecular Biology 202:787–808
    [Google Scholar]
  31. Vanderlaan J.C., , Gerritse G., , Mulleners L. J. S. M., , Van Der Hoek R. A. C., & Quax W. J. 1991; Cloning, characterization and multiple chromosomal integration of a Bacillus alkaline protease gene. Applied and Environmental Microbiology 57:901–909
    [Google Scholar]
  32. Wei L., & Joys T. M. 1985; Covalent structure of three phase-I flagellar filament proteins of Salmonella . Journal of Molecular Biology 186:791–803
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-10-2159
Loading
/content/journal/micro/10.1099/00221287-138-10-2159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error