1887

Abstract

We report the isolation and characterization of a mutant of unable to grow aerobically on non-fermentable substrates, except for very slow growth on glycerol. The mutant contains cytochrome oxidases and , and grows anaerobically with alternative electron acceptors. Oxygen consumption rates of cell-free extracts were low relative to activities in an isogenic control strain, but were restored by adding ubiquinone-1 to cell-free extracts. Transformation with a cloned 2.8 kb I-RV fragment of chromosomal DNA restored the ability of this mutant (AN2571) to grow on succinate and also restored cellular quinone levels in this strain. The plasmid also complemented a previously isolated mutant (AN151) for aerobic growth on succinate. The nucleotide sequence revealed a 0.7 kb portion of A. Unidirectional nested deletions from this fragment and complementation analysis identified an open reading frame encoding a protein with a predicted molecular mass of 26.5 kDa. This gene () encodes the enzyme 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone methyltransferase, which catalyses the terminal step in the biosynthesis of ubiquinone. The open reading frame is preceded by a putative Shine-Dalgarno sequence and followed by three palindromic unit sequences. Comparison of the inferred amino acid sequence of UbiG with the sequence of other -adenosylmethionine (AdoMet)-dependent methyltransferases reveals a highly conserved AdoMet-binding region. The cloned 2.8 kb fragment also contains a sequence encoding the C-terminus of a protein with 42–44% identity to fungal acetyl-CoA synthetases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-10-2101
1992-10-01
2021-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/10/mic-138-10-2101.html?itemId=/content/journal/micro/10.1099/00221287-138-10-2101&mimeType=html&fmt=ahah

References

  1. Au D. C.-T., , Lorence R. M., & Gennis R. B. 1985; Isolation and characterization of an Escherichia coli mutant lacking the cyto-chrome o terminal oxidase. Journal of Bacteriology 161:123–127
    [Google Scholar]
  2. Bachmann B. J. 1987 Linkage map of Escherichia coli K-12. , edition 7. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology, pp. 807–876 Edited by Neidhardt F. C., , Ingraham J. L., , Low K. B., , Magasanik B., , Schaechter M., & person-group-type="editor"> Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Bachmann B. J. 1990; Linkage map of Escherichia coli K-12, Edition 8. Microbiological Reviews 54:130–197
    [Google Scholar]
  4. Bear D. G., & PEABODY D. S. 1988; The E. coli Rho protein: an ATPase that terminates transcription. Trends in Biochemical Sciences 13:343–347
    [Google Scholar]
  5. Bentley R., & Meganathan R. 1987 Biosynthesis of the isoprenoid quinones ubiquinone and menaquinone. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology, pp. 512–520 Edited by Neidhardt F. C., , Ingraham J. L., , Low K. B., , Magasanik B., , Schaechter M., & person-group-type="editor"> Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Birnboim H. C. 1983; A rapid alkaline extraction method for the isolation of plasmid DNA. Methods in Enzymology 100:243–255
    [Google Scholar]
  7. Bolivar F., , Rodriguez R. L., , Greene P. J., , Betlach M. C., , Heynecker H. L., , Boyer H. W., , Crosa J. H., & Falkow S. 1977; Construction and characterization of new Cloning vehicles. II. A multipurpose Cloning system. Gene 2:95–113
    [Google Scholar]
  8. Brendel V., & Trifonov E. N. 1984; A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Research 12:4411–4427
    [Google Scholar]
  9. Chou P. Y., & Fasman G.D. 1978; Empirical predictions of protein conformation. Annual Review of Biochemistry 47:251–276
    [Google Scholar]
  10. Clarke C. F., , Williams W., & Teruya J. H. 1991; Ubiquinone biosynthesis in Saccharomyces cerevisiae. Isolation and sequence of COQ3, the 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase gene. Journal of Biological Chemistry 266:16636–16644
    [Google Scholar]
  11. Collins J. F., & Coulson A. F. W. 1988; Significance of protein similarities. Methods in Enzymology 183:474–487
    [Google Scholar]
  12. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods in Microbiology 18:329–366
    [Google Scholar]
  13. Connerton I. F., , Fincham J. R. S., , Sandeman R. A., & Hynes M. J. 1990; Comparison and cross-species expression of the acetyl-coA synthetase gene of the ascomycete fungi. Aspergillus nidulans and Neurospora crassa. Molecular Microbiology 4:451–460
    [Google Scholar]
  14. Cox G. B., & Downie J. A. 1979; Isolation and characterization of mutants of Escherichia coli K-12 affected in oxidative phosphoryla-tion or quinone biosynthesis. Methods in Enzymology 56:106–117
    [Google Scholar]
  15. Cox G. B., , Hatch L., , Webb D., , Fimmel A. L., , Lin Z.-H., , Senior A. E., & Gibson F. 1987; Amino acid substitutions in thee-subunit of the F1F0-ATPase of Escherichia coli . Biochimica et Biophysica Acta 890:195–204
    [Google Scholar]
  16. Cox G. B., , Newton N. A., , Gibson F., , Snoswell A. M., & Hamilton J. A. 1970; The function of ubiquinone in Escherichia coli . Biochemical Journal 117:551–562
    [Google Scholar]
  17. Ebright R.H., , Kolb A., , Bue H., , Kunkel T. A., , Krakow J. S., & Beckwith A. 1987; Role of glutamic acid-181 in DNA-sequence recognition by the catabolite gene activator protein (CAP) of Escherichia coli: altered DNA-sequence-recognition properties of [Val181]CAP and [Leu181]CAP. Proceedings of the National Academy of Sciences of the United States of America 846083–6087
    [Google Scholar]
  18. Elliott T., & Rora J. R. 1988; Characterization of TnJOdCam: a transposition defective Tnl0 specifying chloramphenicol resistance. Molecular and General Genetics 213:332–338
    [Google Scholar]
  19. Gibert I., , Llagostera M., & Barbe J. 1988; Regulation of ubiG gene expression in Escherichia coli . Journal of Bacteriology 170:1346–1349
    [Google Scholar]
  20. Gibson F. 1973; Chemical and genetic studies on the biosynthesis of ubiquinone by Escherichia coli . Biochemical Society Transactions 1:317–326
    [Google Scholar]
  21. Gibwn F., , Cox G. B., , Downie J. A., & Radik J. 1977; A mutation affecting a second component of the FO portion of the magnesium ion-stimulated adenosine triphosphatase of Escherichia coli K 12. The uncC424 allele. Biochemical Journal 164:193–198
    [Google Scholar]
  22. Gilson E., , Clement J. M., , Perrin D., & Hofnung M. 1987; Palindromic units: a case of highly repetitive DNA sequences in bacteria. Trends in Genetics 3:226–230
    [Google Scholar]
  23. Haydock S. F., , Dowson J. A., , Dhilion N., , Roberts G. A., , Cortes J., & Leadley P. F. 1991; Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea: sequence similarities between EryG and a family of S- adenosylmethionine-dependent methyltransferases. Molecular and General Genetics 230:120–128
    [Google Scholar]
  24. Hohn B., & Collins J. 1980; A Small cosmid for efficient Cloning of large DNA fragments. Gene 11:291–298
    [Google Scholar]
  25. Hussain K., , Elliott E. J., & Salmond G. P. C. 1987; The parD-mutant of Escherichia coli also carries a gyrAam mutation. The complete sequence of gyrA . Molecular Microbiology 1:259–273
    [Google Scholar]
  26. Ingrosso D., , Fowler A. V., , Bleibaum J., & Clarke S. 1989; Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes. common sequence motifs for protein, DNA, RNA, andSmall molecule S-adenosylmethionine-dependent methyltransferases. Journal of Biological Chemistry 264:20131–20139
    [Google Scholar]
  27. Jenkins L. S., & Nunn W. D. 1987; Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in Escherichia coli: the ato system. Journal of Bacteriology 169:42–52
    [Google Scholar]
  28. Kita K., , Konishi K., & Anraku Y. 1984; Terminal oxidases of Escherichia coli aerobic respiratory chain. I. Purification and properties of cytochrome b 562-o complex from cells in the early exponential phase of aerobic growth. Journal of Biological Chemistry 259:3368–3374
    [Google Scholar]
  29. Kohara Y. 1990 Correlation between the physical and genetic maps of the Escherichia coli K-12 chromosome. In The Bacterial chromosome, pp. 29–42 Edited by Drlica K., & person-group-type="editor"> Riley M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Kohara Y., , Akiyama K., , Isono K. 1987; Thephysicalmapofthe whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508
    [Google Scholar]
  31. Kroppenstedt R. M. 1982; Anwendung chromatographischer HP-Verfahren (HPTLC und HPLC) in der Baketerien-Taxonomie. GIT Labor-Medizin 5:266–275
    [Google Scholar]
  32. Lau L. F., , Roberts J. W., , Wu R., , Georges F., & Narang S. A. 1984; A potential stem loop structure and the sequence CAAU-CAA in the transcript are insufficient to signal p-dependent transcription termination at ltRl. Nucleic Acids Research 12:1287–1299
    [Google Scholar]
  33. Lauster R., , Trautner T. A., & Noyer-Weidner M. 1989; Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. Journal of Molecular Biology 206:305–312
    [Google Scholar]
  34. Lenaz G., , Pasquali P., , Bertoli E., , Parenti-Castelli G., & Folkers K. 1975; The inhibition of NADH oxidase by the lower homologs of coenzyme Q. Archives of Biochemistry and Biophysics 169:217–226
    [Google Scholar]
  35. Leppick R. A., , Stroobant P., , Shineberg B., , Young I. G., & Gibson F. 1976; Membrane-associated reactions in ubiquinone biosynthesis. 2-Octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-ben-zoquinone methyltransferase. Biochimica et Biophysica Acta 428:146–156
    [Google Scholar]
  36. Lorence R. M., , Koland J. G., & Gennis R. B. 1986; Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of 'cytochrome a1' as cytochrome b 595 . Biochemistry 25:2314–2321
    [Google Scholar]
  37. Maniatis T., , Fritsch E. F., & Sambrook J. 1982 Molecular Cloning - A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Markwell M.A. K., , Haas S. M., , Bieber L. L., & Tolbert N. E. 1978; A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry 87:206–210
    [Google Scholar]
  39. Miller J. H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Murphy G., & Warde S. 1989 Sequencing of double-stranded DNA. In Nucleic Acids Sequencing. A Practical Approach, pp. 99–115 Edited by Howe C. J., & person-group-type="editor"> Ward E. S. Oxford: IRL Press;
    [Google Scholar]
  41. Platz A., & Sjoberg B.-M. 1980; Construction and characterization of hybrid plasmids containing the Escherichia coli nrd region. Journal of Bacteriology 143:561–568
    [Google Scholar]
  42. Poole R. K. 1977; The influence of growth substrate and capacity for oxidative phosphorylation on respiratory oscillations in synchronous cultures of Escherichia coli Kl 2. Journal of General Microbiology 99:369–377
    [Google Scholar]
  43. Poole R. K., & Ingledew W. J. 1987 Pathway of electrons to oxygen. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology, pp. 170–200 Edited by Neidhardt F. C., , Ingraham J. L., , Low K. B., , Magasanik B., , Schaechter M., & person-group-type="editor"> Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Poole R. K. Baines B. S., & Appleby C. A. 1986; Haemoprotein b-590 (Escherichia coli), a reducible catalase and peroxidase: evidence for its close relationship to hydroperoxidase I and a 'cytochrome a 1 b' preparation. Journal of General Microbiology 132:1525–1539
    [Google Scholar]
  45. Poole R. K., , Williams H. D., , Downie J. A., & Gibson F. 1989; Mutations affecting the cytochrome d-containing oxidase complex of Escherichia coli K12: identification and mapping of a fourth locus, cydD . Journal of General Microbiology 135:1865–1874
    [Google Scholar]
  46. Reich N. O., & Everett E. A. 1990; Identification of peptides involved in S-adenosylmethionine binding in the EcoRI DNA methylase. Photoaffinity labelling with 8-azido-S-adenosylmethionine. Journal of Biological Chemistry 265:8929–8934
    [Google Scholar]
  47. Sanger F., , Nicklen S., & Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 745463–5467
    [Google Scholar]
  48. Shine J., & Dalgarno L. 1974; The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America 711342–1346
    [Google Scholar]
  49. Silhavy T. J., , Berman M. L., & Enquist L. W. 1984 Experiments with Gene Fusions. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Stroobant P., , Young I. G., & Gibson F. 1972; Mutants of Escherichia coli K-12 blocked in the final reaction of ubiquinone biosynthesis: characterization and genetic analysis. Journal of Bacteriology 109:134–139
    [Google Scholar]
  51. Swanberg S. L., & Wang J. C. 1987; Cloning and sequencing of the Escherichia coli gyrA gene coding for the A subunit of DNA gyrase. Journal of Molecular Biology 197:729–736
    [Google Scholar]
  52. Wallace B. J., & Young I. G. 1977a; Aerobic respiration mutants of Escherichia coli accumulating quinone analogues of ubiquinone. Biochimica et Biophysica Acta 461:75–83
    [Google Scholar]
  53. Wallace B. J., & Young I. G. 1977b; Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant. Biochimica et Biophysica Acta 461:84–100
    [Google Scholar]
  54. Wenzel C., , Moulard M., , Lobner-Olesen A., & Guschlbauer W. 1991; Crosslinking of Dam methyltransferase with S-adenosylmethionine. FEBS Letters 280:147–151
    [Google Scholar]
  55. Williams H. D., & Poole R. K. 1987; The cytochromes of Acetobacter pasteurianus NCIB 6428. Evidence of a role for a cytochrome a 1-like haemoprotein in electron transfer to cytochrome oxidase d . Journal of General Microbiology 133:2461–2472
    [Google Scholar]
  56. Wissenbach U., , Kroger A., & Unden G. 1990; The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimelthylamine N-oxide and nitrate by Escherichia coli . Archives of Microbiology 154:60–66
    [Google Scholar]
  57. Yanisch-Perron C., , Vieira J., & Messing J. 1985; Improved Ml3 phage Cloning vectors and host strains: nucleotide sequences of the Ml3mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  58. Yoshida H., , Kojima T., , Yamagishi J., & Nakamura S. 1988; Quinolone-resistant mutations of the gyrA gene of Escherichia coli . Molecular and General Genetics 211:1–7
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-10-2101
Loading
/content/journal/micro/10.1099/00221287-138-10-2101
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error