1887

Abstract

Summary: requires 0·15 m-Ca in the medium for optimal growth. Increasing the Ca concentration to 1 m triggers either a differentiative state, competence for genetic transformation during exponential growth, or partial lysis as soon as the cultures enter stationary phase. Genetic and physiological data both suggest that these responses are under the control of activator(s), excreted in the presence of high Ca concentrations. Ca transport is also stimulated by the activator(s). The amiloride derivative 2”,4′-dimethylbenzamil (DMB) inhibits Ca transport and prevents lysis and competence development. This provides evidence in favour of the involvement of Ca transport in competence and culture lysis. On the other hand, addition of DNA to a competent culture prevents lysis of wild-type bacteria while a mutant, defective for DNA uptake, is not protected from lysis by exogenous DNA. An hypothesis is proposed for competence induction as a global metabolic response to Ca, under the control of competence factor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-1-77
1992-01-01
2021-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/1/mic-138-1-77.html?itemId=/content/journal/micro/10.1099/00221287-138-1-77&mimeType=html&fmt=ahah

References

  1. Ambudkar S. V., Lynn A. R., Maloney P. C., Rosen B. P. 1986; Reconstitution of ATP-dependent calcium transport from strepto-cocci. Journal of Biological Chemistry 261:15596–15600
    [Google Scholar]
  2. Chandler M. S., Morrison D. A. 1988; Identification of two proteins encoded by com, a competence control locus of Streptococcus pneumoniae . Journal of Bacteriology 170:3136–3141
    [Google Scholar]
  3. Chen J. D., Morrison D. A. 1987; Modulation of competence for genetic transformation in Streptococcus pneumoniae . Journal of General Microbiology 133:1959–1967
    [Google Scholar]
  4. Clavé C. 1988 Flux ioniques et energetique cellulaire au cours de I’induction de la competence chez Streptococcus pneumoniae, leur implication dans le transport de I’ADN DOCTORAT D’UNIVERSITÉ,UNIVERSITÉ PAUL SABATIER; TOULOUSE, FRANCE:
    [Google Scholar]
  5. Clavé C., Trombe M. C. 1989; Intracellular pH and ATP involvement in DN A uptake by Streptococcus pneumoniae competent for genetic transformation. FEMS Microbiology Letters 65:113–118
    [Google Scholar]
  6. ClavÉ C., Morrison D. A., Trombe M. C. 1987; Is DNA transport driven by the proton electrochemical potential difference in the naturally transformable bacteria Streptococcus pneumoniae?. Bioelectrochemistry and Bioenergetics 17:269–276
    [Google Scholar]
  7. Clavé C., Martin F., Trombe M. C. 1989 DNA uptake in Streptococcus pneumoniae: an insight into energetics and mechanism. Genetic Transformation and Expression27–40 In pp Edited by Butler L. O., Harwood C., Moseley B. E. B. Andover: Intercept;
    [Google Scholar]
  8. Diaz E., Garcia J. L. 1990; Characterization of the transcription unit encoding the major pneumococcal autolysin. Gene 90:157–162
    [Google Scholar]
  9. Dubnau D. 1991; The regulation of genetic competence in Bacillus subtillis . Molecular Microbiology 5:11–18
    [Google Scholar]
  10. Falah A. M. S., Bhatnagar R., Bhatnagar N., Singh Y., Sidhu G. S., Murthy P. S., Venkitasubramanian T. A. 1988; On the presence of calmodulin-like protein in mycobacteria. FEMS Microbiology Letters 56:89–94
    [Google Scholar]
  11. Fox M. S., Hotchkiss R. D. 1957; Initiation of bacterial transformation. Nature, London 179:1322–1325
    [Google Scholar]
  12. Fry I. J., Villa L., Kuehn G. D., Hageman J. H. 1986; CALMODULIN-LIKE PROTEIN FROM Bacillus subtilis . Biochemical and Biophysical Research Communications 134:212–217
    [Google Scholar]
  13. HÖltje J. V., Tomasz A. 1976; Purification of the pneumococcal N-acetylmuramyl-L-alanine amidase to biochemical homogeneity. Journal of Biological Chemistry 251:4199–4207
    [Google Scholar]
  14. Hui F. M., Morrison D. A. 1991; Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows com A, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. Journal of Bacteriology 173:372–382
    [Google Scholar]
  15. Inouye S., Franceschini T., Inouye M. 1983; Structural similarities between the development-specific protein S from a Gram-negative bacterium Myxococcus xanthus and calmodulin . Proceedings of the National Academy of Sciences of the United States of America 806829–6833
    [Google Scholar]
  16. Kaczorowski G. J., Barros F., Dethmers J. K., Trumble M. J. 1985; Inhibition of Na+/Ca2+ exchange in pituitary membrane vesicles by analogues of amiloride. Biochemistry 24:1394–1403
    [Google Scholar]
  17. Kobayashi H., Van Brunt J, Harold F. M. 1978; ATP-linked calcium transport in cells and membrane vesicles of Streptococcus faecalis . Journal of Biological Chemistry 253:2085–2092
    [Google Scholar]
  18. Koronakis V. M., Cross M., Senior B., Koronakis E., Hughes C. 1988; Comparison of the haemolysin secretion protein HlyB from Proteus vulgaris and E. coli; site-directed mutagenesis causing impairment of export function. Molecular and General Genetics 213:551–555
    [Google Scholar]
  19. Lacks S. A. 1977 Binding and entry of DNA in pneumococcal transformation. In Modem Trends in Bacterial Transformation and Transfection pp 35–44 Edited by Portoles A., Lopez R., Espinoza M. Amsterdam: Elsevier/North Holland;
    [Google Scholar]
  20. Lacks S. A., Greenberg B. 1973; Competence for DNA uptake and deoxyribonuclease action external to cells in the genetic transformation of Diplococcus pneumoniae . Journal of Bacteriology 114:152–163
    [Google Scholar]
  21. Lacks S., Hotchkiss R. D. 1960; A study of the genetic material determining an enzyme activity in pneumococcus. Biochimica and Biophysica Acta 39:508–517
    [Google Scholar]
  22. Lacks S. A., Neuberger M. 1975; Membrane location of a deoxyribonuclease implicated in the genetic transformation of Diplococcus pneumoniae·. Journal of Bacteriology 124:1321–1329
    [Google Scholar]
  23. Lacks S., Greenberg B., Carlson K. 1967; Fate of donor DNA in pneumococcal transformation. Journal of Molecular Biology 29:327–347
    [Google Scholar]
  24. Leonard C. G., Cole R. M. 1972; Purification and properties of streptococcal competence factor isolated from chemically defined medium. Journal of Bacteriology 110:273–280
    [Google Scholar]
  25. Lerman L. S., Tolmach L. J. 1957; Genetic transformation. I. Cellular incorporation of DNA accompanying transformation in pneumococcus. Biochimica and Biophysica Acta 26:68–82
    [Google Scholar]
  26. Lopez R., Ronda-LAIN C., Tapia A., Waks S. B., Tomasz A. 1976; Suppression of the lytic and bactericidal effects of cell wall-inhibitory antibiotics. Antimicrobial Agents and Chemotherapy 10:697–706
    [Google Scholar]
  27. Lopez A., ClavÉ C., Capeyrou R., Lafontan V., Trombe M. C. 1989; Ionic and energetic changes at competence in the naturally transformable bacterium Streptococcus pneumoniae . Journal of General Microbiology 135:2189–2197
    [Google Scholar]
  28. Lopez R., Ronda C., Garcia E. 1990; Autolysins are directly involved in the bactericidal effect caused by penicillin in wild type and in tolerant pneumococci. FEMS Microbiology Letters 66:317–322
    [Google Scholar]
  29. Love P. E., Yasbin R. E. 1986; Induction of the Bacillus subtilis RecA protein. Proceedings of the National Academy of Sciences of the United States of America 835204–5208
    [Google Scholar]
  30. Morrison D. A., Baker F. M. 1979; Competence for genetic transformation in pneumococcus depends on synthesis of a small set of proteins. Nature, London 282:215–217
    [Google Scholar]
  31. Morrison D. A., Lacks S. A., Guild W. R., Hageman J. M. 1983; Isolation and characterization of three new classes of transformation-deficient mutants of Streptococcus pneumoniae that are defective in DNA transport and genetic recombination. Journal of Bacteriology 156:281–290
    [Google Scholar]
  32. Morrison D. A., Trombe M. C., Hayden M. K., Waszack G. A., Chen J. D. 1984; Isolation of transformation-deficient Streptococcus pneumoniae mutants defective in control of competence, using insertion-duplication mutagenesis with the erythromycin resistance determinant pAMBl. Journal of Bacteriology 159:870–876
    [Google Scholar]
  33. Murrell W. G. 1967; The biochemistry of the bacterial endospore. Advances in Microbial Physiology 1:133–251
    [Google Scholar]
  34. Nava G., Galis A., Beiser S. M. 1963; Bacterial transformation: an antigen specific for competent pneumococci. Nature, London 197:903–904
    [Google Scholar]
  35. Pakula R., Walczak W. 1963; On the nature of competence activator of transformable streptococci. Journal of General Microbiology 31:125–133
    [Google Scholar]
  36. Raina J. L., Ravin A. W. 1980; Switches in macromolecular synthesis during induction of competence for transformation of Streptococcus sanguis. Proceedings of the National Academy of Sciences of the United States of America 776062–6066
    [Google Scholar]
  37. Reusch R. N., Sadoff H. L. 1983; D-( — )-Poly-β-hydroxybutyrate in membranes of genetically competent bacteria. Journal of Bacteriology 156:778–788
    [Google Scholar]
  38. Rosen B. P. 1987; Bacterial calcium transport. Biochimica et Biophysica Acta 906:101–110
    [Google Scholar]
  39. Sanchez-PUELLES J. M., Ronda J. M., Garcia C., Mendez E., Garcia E., Garcia J. L., Lopez R. 1986; A new peptidoglycan hydrolase in Streptococcus pneumoniae . FEMS Microbiology Letters 35:163–166
    [Google Scholar]
  40. Seto H., Tomasz A. 1974; Early stages in DNA binding and uptake during genetic transformation of streptococci. Proceedings of the National Academy of Sciences of the United States of America 711493–1498
    [Google Scholar]
  41. Seto H., Tomasz A. 1976; Calcium-requiring step in the uptake of deoxyribonucleic acid molecules through the surface of competent pneumococci. Journal of Bacteriology 126:1113–1118
    [Google Scholar]
  42. Simchowitz L., Cragoe E. J. JR 1986; Inhibition of chemotactic factor-activated Na+/H+ exchange in human neutrophils by analogues of amilorides: structure-activity relationships in the amiloride series. Molecular Pharmacology 30:112–120
    [Google Scholar]
  43. Swan D. G., Cortes J., Hale R. S., Leadlay P. F. 1989; Cloning, characterization and heterologous expression of the Saccharopolyspora erythraea gene encoding an EF-hand calciumbinding protein. Journal of Bacteriology 171:5614–5619
    [Google Scholar]
  44. Swan D. G., Hale R. S., Dhillon N., Leadley P. F. 1987; A bacterial calcium-binding protein homologous to calmodulin. Nature, London 329:84–85
    [Google Scholar]
  45. Tiraby G., Fox M. S. 1973; Marker discrimination in transformation and mutation of Streptococcus pneumoniae . Proceedings of the National Academy of Sciences of the United States of America 703541–3545
    [Google Scholar]
  46. Tomasz A., Hotchkiss R. D. 1964; Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proceedings of the National Academy of Sciences of the United States of America 51480–487
    [Google Scholar]
  47. Tomasz A., Moreillon P., Pozzi G. 1988; Insertional inactivation of the major autolysin of Streptococcus pneumoniae . Journal of Bacteriology 170:5931–5934
    [Google Scholar]
  48. Trombe M. C. 1981 Caractérisation de mutants de résistance à l’améthoptérine chez Streptococcus pneumoniae; altération du poténtiel transmembranaire. Mise en evidence d'une cible membranaire pour l’améthopterine Doctorat D’État, Université Paul Sabatier; Toulouse, France:
    [Google Scholar]
  49. Trombe M. C. 1983; Alteration du transport actif des acides aminés au moment de la competence chez Streptococcus pneumoniae Comptes Rendus de l’Academie des Sciences . Paris. Sciences de la Vie 294:42–44
    [Google Scholar]
  50. Trombe M. C, LANÉELLE G., Sicard A. M. 1984; Characterization of a Streptococcus pneumoniae mutant with altered electric transmembrane potential. Journal of Bacteriology 158:1109–1114
    [Google Scholar]
  51. Ziegler R., Tomasz A. 1970; Binding of the competence factor to receptors in the spheroplast membrane of streptococci. Biochemical and Biophysical Research Communications 41:1342–1349
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-1-77
Loading
/content/journal/micro/10.1099/00221287-138-1-77
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error