1887

Abstract

Summary: produced several intracellular NADH:quinone oxidoreductases under agitated, nitrogen-limited cultivation conditions. One of the quinone reductases was purified and shown to have a molecular mass of 69 kDa by SDS-PAGE, while the molecular mass determined by gel filtration was 47 kDa. This reductase was separated by IEF into four protein bands, each with quinone reductase activity. The isoelectric points of the proteins were 5·7, 5·9, 6·0 and 6·3. The proteins reduced several quinones to the corresponding hydroquinones, but none of them was specific to any one of the quinones tested. Mycelial extracts of contained several more quinone reductases, with isoelectric points of 4·4, 4·7, 5·0, 5·3, 5·5 and 6·6. Quinone reductase activity could be induced by adding vanillic acid or 2-methoxy-1,4-benzoquinone to the growth medium in nitrogen-limited cultures and in carbon-limited cultures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-9-2209
1991-09-01
2021-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/9/mic-137-9-2209.html?itemId=/content/journal/micro/10.1099/00221287-137-9-2209&mimeType=html&fmt=ahah

References

  1. Ander P., Hatakka A., Eriksson K. E. 1980; Vanillic acid metabolism by the white-rot fungus Sporotrichum pulverulentwn. Archives of Microbiology 125:189–202
    [Google Scholar]
  2. Ander P., Chittra M., Farrell R. L., Eriksson K. E. 1990; Redox reactions in lignin degradation: interactions between laccase, different peroxidases and cellobiose: quinone oxidoreductase. Journal of Biotechnology 13:189–198
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  4. Buswell J. A., Eriksson K. E. 1988; NAD(P)H dehydrogenase (quinone) from Sporotrichum pulverulentum. Methods in Enzymology 161:271–781
    [Google Scholar]
  5. Buswell J. A., Hamp S., Eriksson K. E. 1979; Intracellular quinone reduction in Sporotrichum pulverulentum by a NAD(P)H: quinone oxidoreductase. FEBS Letters 108:229–232
    [Google Scholar]
  6. Fieser L. F., Fieser M. 1967 Reagents for Organic Synthesis 11081 New York: John Wiley;
    [Google Scholar]
  7. Gold M. H., Kuwahara M., Chiu A. A., Glenn J. K. 1984; Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white-rot basidiomycete Phanero-chaete chrysosporium. Archives of Biochemistry and Biophysics 234:353–362
    [Google Scholar]
  8. Hammerli S. D., Leisola M. S. A., Fiechter A. 1986; Polymerization of lignins by ligninases from Phanerochaete chrysosporium. FEMS Microbiology Letters 35:33–36
    [Google Scholar]
  9. Higuchi T. 1985; Degradative pathways of lignin model compounds. Biosynthesis and Biodegradation of Wood Components558–561 Higuchi T. London: Academic Press;
    [Google Scholar]
  10. Höjeberg B. O., Blomberg K., Stenberg S., Lind C. 1981; Biospecific adsorption of hepatic DT-diaphorase on immobilized dicoumarol. Archives of Biochemistry and Biophysics 207:205–216
    [Google Scholar]
  11. Keyser P. J., Kirk T. K., Zeikus J. G. 1978; Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in absence of lignin in response to nitrogen starvation. Journal of Bacteriology 135:790–797
    [Google Scholar]
  12. Leisola M. S. A., Ulmer D. C., Waldner R., Fiechter A. 1984; Role of veratryl alcohol in lignin degradation by Phanerochaete chrysosporium. Journal of Biotechnology 1:331–339
    [Google Scholar]
  13. Lowe C. R., Pearson J. 1984; Affinity chromatography on immobilized dyes. Methods in Enzymology 104:22–2397–113
    [Google Scholar]
  14. Muheim A., Waldner R., Leisola M. S. A., Fiechter A. 1990; An extracellular aryl alcohol oxidase from the white-rot fungus Bjerkandera adusta. Enzyme and Microbial Technology 12:204–209
    [Google Scholar]
  15. Sakai T. 1988; Protopectinase from yeasts and a yeastlike fungus. Methods in Enzymology 161:335–350
    [Google Scholar]
  16. Schmidt H. W. H., Haemmerli S. D., Schoemaker H. E., Leisola M. S. A. 1989; Oxidative degradation of 3,4-dimethoxybenzyl alcohol and its methyl ether by the lignin peroxidase of Phanerochaete chrysosporium. Biochemistry 28:1776–1783
    [Google Scholar]
  17. Schoemaker H. E., Leisola M. S. A. 1987; Enzymatic lignin degradation. New developments. Proceedings of the 31st IUPΔC Congress of Pure and Applied Chemistry section 4:267–280
    [Google Scholar]
  18. Schoemaker H. E., Meijer E. M., Leisola M. S. A., Haemmerli S. D., Waldner R., Sanglard D., Schmidt H. W. H. 1989; Oxidation and reduction in lignin biodegradation. In Plant Cell Wall Polymers: Biogenesis and Biodegradation (ACS Symposium no. 399)454–471 Washington, DC: American Chemical Society;
    [Google Scholar]
  19. Tien M., Kirk T. 1983; Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663
    [Google Scholar]
  20. Ulmer D., Leisola M. S. A., Puhakka J., Fiechter A. 1983; Growth pattern and lignin degradation. European Journal of Applied Microbiology and Biotechnology 18:153–157
    [Google Scholar]
  21. Westermark U., Eriksson K. E. 1974a; Carbohydrate dependent enzymic quinone reduction during lignin degradation. Acta Chemica Scandinavica 28:204–208
    [Google Scholar]
  22. Westermark U., Eriksson K. E. 1974b; Cellobiose:quinone oxidoreductase, a new wood-degrading enzyme from white-rot fungi. Acta Chemica Scandinavica 28:209–214
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-9-2209
Loading
/content/journal/micro/10.1099/00221287-137-9-2209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error