1887

Abstract

Summary: Cephalosporin biosynthetic activity and extracellular protease production increased during growth of in defined medium, while the level of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) remained very low and stable. Cephalosporin biosynthesis (measured in resting cell systems) was initiated during early exponential growth in complex media, without appreciable change in the small ppGpp pool. Nutritional shift-down induced by withdrawal of Casamino acids caused a transient increase in ppGpp and a reduction of RNA accumulation. The increase in ppGpp was small in very young cultures, but increased as the culture aged. Twenty-seven spontaneous thiostrepton-resistant mutants were isolated and partially characterized. Most of them had a reduced ppGpp-forming ability and gave normal titres of cephalosporin. However, in complex medium, some mutants did not produce cephalosporins or extracellular protease, whereas others overproduced cephalosporins. The results indicate that, in , there is no obligatory relationship between the initiation of secondary metabolism and the stringent response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-7-1625
1991-07-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/7/mic-137-7-1625.html?itemId=/content/journal/micro/10.1099/00221287-137-7-1625&mimeType=html&fmt=ahah

References

  1. Acosta R., Lueking D. R. 1987; Stringency in the absence of ppGpp accumulation in Rhodobacter sphaeroides . Journal of Bacteriology 169:169–908
    [Google Scholar]
  2. Adamidis T., Riggle P., Champness W. 1990; Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. Journal of Bacteriology 172:172–2962
    [Google Scholar]
  3. Aharonowitz Y., Demain A. L. 1977; Influence of inorganic phosphate and organic buffers on cephalosporin production by Streptomyces clavuligerus . Archives of Microbiology 115:115–169
    [Google Scholar]
  4. Aharonowitz Y., Demain A. L. 1979; Nitrogen nutrition and regulation of cephalosporin production in Streptomyces clavuligerus . Canadian Journal of Microbiology 25:25–61
    [Google Scholar]
  5. Ambulos N. P., Rogers E. J., Alexieva Z., Lovett P. S. 1988; Induction of cat-86 by chloramphenicol and amino acid starvation in relaxed mutants of Bacillus subtilis . Journal of Bacteriology 170:5642–5646
    [Google Scholar]
  6. An G., Vining L. C. 1978; Intracellular levels of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) in cultures of Streptomyces griseus producing streptomycin. Canadian Journal of Microbiology 1A:502–511
    [Google Scholar]
  7. Bascarán V., Hardisson C., Braña A. F. 1989; Regulation of nitrogen catabolic enzymes in Streptomyces clavuligerus . Journal of General Microbiology 135:135–2465
    [Google Scholar]
  8. Bascarán V., Hardisson C., Braña A. F. 1990; Regulation of extracellular protease production in Streptomyces clavuligerus . Applied Microbiology and Biotechnology 34:34–208
    [Google Scholar]
  9. Belitsky B., Kari C. 1982; Absence of accumulation of ppGpp and RNA during amino acid starvation in Rhizobium meliloti . Journal of Biological Chemistry 257:257–4677
    [Google Scholar]
  10. Bok S. H., Demain A. L. 1977; An improved assay for polyols. Analytical Biochemistry 81:81–18
    [Google Scholar]
  11. Braña A. F., Wolfe S., Demain A. L. 1985; Ammonium repression of cephalosporin production by Streptomyces clavuligerus . Canadian Journal of Microbiology 31:31–736
    [Google Scholar]
  12. Braña A. F., Wolfe S., Demain A. L. 1986; Relationship between nitrogen assimilation and cephalosporin synthesis in Streptomyces clavuligerus . Archives of Microbiology 146:146–46
    [Google Scholar]
  13. Bushell M. E., Fryday A. 1983; The application of materials balancing to the characterization of sequential secondary metabolite formation in Streptomyces cattleya NRRL 8057. Journal of General Microbiology 129:129–1733
    [Google Scholar]
  14. Cundliffe E. 1986; Involvement of specific portions of ribosomal RNA in defined ribosomal functions: a study utilizing antibiotics. Structure, Function, and Genetics of Ribosomes586–604 Hardesty B., Kramer G. New York: Springer-Verlag;
    [Google Scholar]
  15. Cundliffe E., Dixon P., Stark M., Stöffler G., Ehrlich R., Stöffler-Meilicke M., Cannon M. 1979; Ribosomes in thiostrepton-resistant mutants of Bacillus megaterium lacking a single 50S subunit protein. Journal of Molecular Biology 132:132–235
    [Google Scholar]
  16. Freese E., Olempska-Beer Z., Eisenberg M. 1984; Nucleotide composition of cell extracts analysed by full-spectrum recording in high-performance liquid chromatography. Journal of Chromato-graphy 284:284–125
    [Google Scholar]
  17. Freese E., Freese E. B., Allen E. R., Olempska-Beer Z., Orrego C., Varma A., Wabiko H. 1985; Metabolic initiation of spore development. Molecular Biology of Microbial Differentiation194–202 Hoch J. A., Setlow P. Washington DC: American Society for Microbiology;
    [Google Scholar]
  18. Ginther C. L. 1979; Sporulation and the production of serine protease and cephamycin C by Streptomyces lactamdurans . Antimicrobial Agents and Chemotherapy 15:15–522
    [Google Scholar]
  19. Hardisson C., Manzanal M. B., Salas J. A., Suarez J. E. 1978; Fine structure, physiology and biochemistry of arthrospore germination in Streptomyces antibioticus . Journal of General Microbiology 105:105–203
    [Google Scholar]
  20. Hill D. W., Walters F. M., Wilson D., Stuart J. D. 1979; High performance liquid chromatographic determination of amino acids in the picomole range. Analytical Chemistry 51:51–1338
    [Google Scholar]
  21. Hobbs G., Frazer C. M., Gardner D. C. J., Flett F., Oliver S. G. 1990; Pigmented antibiotic production by Streptomyces coelicolor A3(2): kinetics and the influence of nutrients. Journal of General Microbiology 136:136–2291
    [Google Scholar]
  22. Hopwood D. A. 1988; Understanding the genetic control of antibiotic biosynthesis and sporulation in Streptomyces . Biology of Actinomycetes ‘883–10 Okami Y., Beppu T., Ogawara H. Tokyo: Japan Scientific Societies Press;
    [Google Scholar]
  23. Lovett P. S. 1990; Translational attenuation as the regulator of inducible cat genes. Journal of Bacteriology 172:172–1
    [Google Scholar]
  24. McDowell T. D., Reed K. E., Hadley W. M. 1988; Accumulation of ppGpp in three streptococci during periods of amino acid starvation. FEMS Microbiology Letters 56:56–151
    [Google Scholar]
  25. Madduri K., Stuttard C., Vining L. C. 1989; Lysine catabolism in Streptomyces spp. is primarily through cadaverine: β-lactam producers also make α-aminoadipate. Journal of Bacteriology 171:171–299
    [Google Scholar]
  26. Martin J. F., Demain A. L. 1980; Control of antibiotic biosynthesis. Microbiological Reviews 44:23U–251
    [Google Scholar]
  27. Ochi K. 1986; Occurrence of the stringent response in Streptomyces sp. and its significance for the initiation of morphological and physiological differentiation. Journal of General Microbiology 132:132–2621
    [Google Scholar]
  28. Ochi K. 1987a; Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus; significance of the stringent response (ppGpp) and GTP content in relation to A factor. Journal of Bacteriology 169:169–3608
    [Google Scholar]
  29. Ochi K. 1987b; A rel mutation abolishes the enzyme induction needed for actinomycin synthesis by Streptomyces antibioticus . Agricultural and Biological Chemistry 51:51–829
    [Google Scholar]
  30. Ochi K. 1987c; Changes in nucleotide pools during sporulation of Streptomyces griseus in submerged culture. Journal of General Microbiology 133:133–2787
    [Google Scholar]
  31. Ochi K. 1988; Nucleotide pools and stringent response in regulation of Streptomyces differentiation. Biology of Actinomycetes ‘88330–337 Okami Y., Beppu T., Ogawara H. Tokyo: Japan Scientific Societies Press;
    [Google Scholar]
  32. Ochi K. 1990; Streptomyces relC mutants with an altered ribosomal protein ST-L11 and genetic analysis of a Streptomyces griseus relC mutant. Journal of Bacteriology 172:172–4008
    [Google Scholar]
  33. Ochi K., Kandala J. C., Freese E. 1981; Initiation of Bacillus subtilis sporulation by the stringent response to partial amino-acid deprivation. Journal of Biological Chemistry 256:256–6866
    [Google Scholar]
  34. Parker J., Watson R. J., Friesen J. D. 1976; A relaxed mutant with an altered ribosomal protein LI 1. Molecular and General Genetics 144:144–111
    [Google Scholar]
  35. Quirós L. M., Parra F., Hardisson C., Salas J. A. 1989; Structural and functional analysis of ribosomal subunits from vegetative mycelium and spores of Streptomyces antibioticus . Journal of General Microbiology 135:135–1661
    [Google Scholar]
  36. Riesenberg D., Bergter F., Kari C. 1984; Effect of serine hydroxamate and methyl α-D-glucopyranoside treatment on nucleo-side polyphosphate pools, RNA and protein accumulation in Streptomyces hygroscopicus . Journal of General Microbiology 130:130–2549
    [Google Scholar]
  37. Rollins M. J., Jensen S. E., Wolfe S., Westlake D. W. S. 1990; Oxygen derepresses deacetoxycephalosporin C synthase and increases the conversion of penicillin N to cephamycin C in Streptomyces clavuligerus . Enzyme and Microbial Technology 12:12–40
    [Google Scholar]
  38. Romero J., Liras P., Martin J. F. 1984; Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus . Applied Microbiology and Biotechnology 20:20–318
    [Google Scholar]
  39. Romero J., Liras P., Martin J. F. 1988; Isolation and biochemical characterization of Streptomyces clavuligerus mutants in the biosynthesis of clavulanic acid and cephamycin C. Applied Microbiology and Biotechnology 27:27–510
    [Google Scholar]
  40. Šimúth J., Hudec J., Chau H. T., Dánvi O., Zelinka J. 1979; The synthesis of highly phosphorylated nucleotides, RNA and protein by Streptomyces aureofaciens . Journal of Antibiotics 32:32–53
    [Google Scholar]
  41. Smith I., Paress P., Pestka S. 1978; Thiostrepton-resistant mutants exhibit relaxed synthesis of RNA. Proceedings of the National Academy of Sciences of the United States of America 7575–5993
    [Google Scholar]
  42. Spadaro A., Spena A., Santonastaso V., Donini P. 1981; Stringency without ppGpp accumulation. Nature, London 291:291–256
    [Google Scholar]
  43. Strauch E., Takano E., Baylis H. A., Bibb M. J. 1991; The stringent response in Streptomyces coelicolor A3(2). Molecular Microbiology 5:5–289
    [Google Scholar]
  44. Vining L. C., Jensen S., Westlake D. W. S., Aharonowitz Y., Wolfe S. 1987; Cephamycin production and isopenicillin N synthetase activity in cultures of Streptomyces clavuligerus . Applied Micrpbiology and Biotechnology 27:27–240
    [Google Scholar]
  45. Weatherburn M. W. 1967; Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39:39–971
    [Google Scholar]
  46. Wienen B., Ehrlich R., Stöffler-Meilicke M., Stöffler G., Smith I., Weiss D., Vince R., Pestka S. 1979; Ribosomal protein alterations in thiostrepton- and micrococcin-resistant mutants of Bacillus subtilis . Journal of Biological Chemistry 254:8031–8041
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-7-1625
Loading
/content/journal/micro/10.1099/00221287-137-7-1625
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error