1887

Abstract

NCTC 418 is able to convert 2-ketogluconate intracellularly to 6-phosphogluconate by the combined action of an NADPH-dependent 2-ketogluconate reductase and gluconate kinase. Synthesis of the former enzyme was maximal under 2-ketogluconate-Iimited growth conditions. An instantaneous transition to a 2-ketogluconate-excess condition resulted in an acceleration of catabolism of this carbon source, accompanied by complete inhibition of biosynthesis. It is suggested that the cause of this inhibition resides in depletion of the NADPH pool due to the high rate at which NADPH is oxidized by 2-ketogluconate reductase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-7-1479
1991-07-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/7/mic-137-7-1479.html?itemId=/content/journal/micro/10.1099/00221287-137-7-1479&mimeType=html&fmt=ahah

References

  1. Ameyama M., Adachi O. 1982; 2-Keto-dgluconate reductase from acetic acid bacteria. Methods in Enzymology 89:203–210
    [Google Scholar]
  2. Bergmeyer H. U., Bernt E. 1974; α-Ketoglutarat, UV- spektrophotometrische Bestimmung. In Methoden der enzymatischen Analyse, 3. II1624–1627 Bergmeyer H. U. Weinheim: Verlag Chemie;
    [Google Scholar]
  3. Bergmeyer H. U., Gawehn K., Grassl M. 1974; Enzyme als biochemische Reagentien. In Methoden der enzymatischen Analyse, 3. I485 Bergmeyer H. U. Weinheim: Verlag Chemie;
    [Google Scholar]
  4. Buurman E. T., Teixeira de Mattos M. J., Neijssel O. M. 1991; Futile cycling of ammonium ions via the high affinity potassium uptake system (Kdp) of Escherichia coli . Archives of Microbiology (in the Press)
    [Google Scholar]
  5. Ciferri O., Blakely E. R. 1959; The metabolism of 2-keto-dgluconate by cell-free extracts of Leuconostoc mesenteroides . Canadian Journal of Microbiology 5:547–560
    [Google Scholar]
  6. De Ley J. 1954; Phospho-2-keto-dgluconate, an intermediate in the carbohydrate metabolism of Aerobacter cloacae . Biochimica et Biophysica Acta 13:302
    [Google Scholar]
  7. De Ley J., Vandamme J. 1955; The metabolism of sodium 2-keto-dgluconate by micro-organisms. Journal of General Microbiology 12:162–171
    [Google Scholar]
  8. Evans C. G. T., Herbert D., Tempest D. W. 1970; The continuous cultivation of micro-organisms. II. Construction of a chemostat. Methods in Microbiology 2:277–327
    [Google Scholar]
  9. Frampton E. W., Wood W. A. 1961a; Purification and properties of 2-ketogluconokinase from Aerobacter aerogenes . Journal of Biological Chemistry 236:2578–2580
    [Google Scholar]
  10. Frampton E. W., Wood W. A. 1961b; Carbohydrate oxidation by Pseudomonas fluorescens . Journal of Biological Chemistry 236:2571–2577
    [Google Scholar]
  11. Gornall A. G., Bardawill C. J., David M. A. 1949; Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry 236:751–766
    [Google Scholar]
  12. Herbert D., Phipps P. J., Tempest D. W. 1965; The chemostat: design and instrumentation. Laboratory Practice 14:1150–1161
    [Google Scholar]
  13. Herbert D., Phipps P. J., Strange R. E. 1971; Chemical analysis of microbial cells. Methods in Microbiology 5B:209–344
    [Google Scholar]
  14. Hommes R. W. J., van Hell B., Postma P. W., Neijssel O. M., Tempest D. W. 1985; The functional significance of glucose dehydrogenase in Klebsiella aerogenes . Archives of Microbiology 143:163–168
    [Google Scholar]
  15. Hucho F., Wallenfels K. 1972; Glucono-δlactonase from Escherichia coli . Biochimica et Biophysica Acta 276:176–179
    [Google Scholar]
  16. Jermyn M. A. 1960; Studies on the glucono-δlactonase of Pseudomonas fluorescens . Biochimica et Biophysica Acta 37:78–92
    [Google Scholar]
  17. Leegwater M. P. M. 1983; Microbial reactivity: its relevance to growth in natural and artificial environments. 46–47 PhD thesis, University of Amsterdam, The Netherlands
    [Google Scholar]
  18. Matsushita K., Shinagawa E., Ameyama M. 1982; dGluconate dehydrogenase from bacteria, membrane-bound. Methods in Enzymology 89:187–193
    [Google Scholar]
  19. Meers J., Tempest D. W., Brown C. M. 1970; ‘Glutamine-(amide) : 2-oxoglutarate amino transferase oxidoreductase (NADP)’, an enzyme involved in the synthesis of glutamate by some bacteria. Journal of General Microbiology 64:187–194
    [Google Scholar]
  20. Móllering H., Bergmeyer H. U. 1974; dGluconat. In Methoden der enzymatischen Analyse, 3. II:1288–1292 Bergmeyer H. U. Weinheim: Verlag Chemie;
    [Google Scholar]
  21. Neijssel O. M., Tempest D. W. 1976; The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Archives of Microbiology 110:305–311
    [Google Scholar]
  22. Neijssel O. M., Tempest D. W., Postma P. W., Duine J. A., Frank, Jzn J. 1983; Glucose metabolism by K+limited Klebsiella aerogenes : evidence for the involvement of a quinoprotein glucose dehydrogenase. FEMS Microbiology Letters 20:35–39
    [Google Scholar]
  23. O’Brien R. W., Neijssel O. M., Tempest D. W. 1980; Glucose phosphoe/io/pyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenes growing in chemostat culture. Journal of General Microbiology 116:305–314
    [Google Scholar]
  24. Roberts B. K., Midgley R. M., Dawes E. A. 1973; The metabolism of 2-oxogluconate by Pseudomonas aeruginosa . Journal of General Microbiology 78:319–329
    [Google Scholar]
  25. Streekstra H. 1990; Metabolic uncoupling in anaerobic Klebsiella pneumoniae. PhD thesis, University of Amsterdam, The Netherlands
    [Google Scholar]
  26. Streekstra H., Teixeira de Mattos M. J., Neijssel O. M., Tempest D. W. 1987; Overflow metabolism during anaerobic growth of Klebsiella pneumoniae NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Archives of Microbiology 147:268–275
    [Google Scholar]
  27. Teixeira de Mattos M. J., Streekstra H., Tempest D. W. 1984; Metabolic uncoupling of substrate level phosphorylation in anaerobic glucose-limited chemostat cultures of Klebsiella aerogenes NCTC 418. Archives of Microbiology 139:260–264
    [Google Scholar]
  28. Whiting P. H., Midgley M., Dawes E. A. 1976; The role of glucose limitation in the regulation of the transport of glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa . Journal of General Microbiology 92:304–310
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-7-1479
Loading
/content/journal/micro/10.1099/00221287-137-7-1479
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error