1887

Abstract

MT15 is the host of the large (250 kbp) TOL plasmid pWW15. We have shown by a combination of hybridization, molecular cloning and enzyme assay that pWW15 carries two distinct regions which share homology with the upper pathway operons () of other TOL plasmids and two distinct regions which are homologous to the pathway operons () of other TOL plasmids. Both the areas of homology to the upper pathway operons appear to carry all of the structural genes for the three catabolic enzymes of the operon. One of the regions of pathway operon homology encodes a complete functional pathway, but the second is incomplete and appears to carry only the genes from downstream.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-12-2831
1991-12-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/12/mic-137-12-2831.html?itemId=/content/journal/micro/10.1099/00221287-137-12-2831&mimeType=html&fmt=ahah

References

  1. Assinder S. J., Williams P. A. 1990; The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Advances in Microbial Physiology 31:1–69
    [Google Scholar]
  2. Bagdasarian M., Lurz R., Ruckert B., Franklin F. C. H., Bagdasarian M. M., Frey J., Timmis K. N. 1981; Specific purpose plasmid cloning vectors. II. Broad host range, high copy number RSF1010-derived vectors and a host: vector system. Gene 16:237–247
    [Google Scholar]
  3. Bayley S. A., Duggleby C. J., Worsey M. J., Williams P. A., Hardy K. M., Broda P. 1977; Two modes of loss of the Tol function from Pseudomonas putida mt-2. Molecular and General Genetics 154:203–204
    [Google Scholar]
  4. Chatfield L. K., Williams P. A. 1986; Naturally-occurring TOL plasmids isolated from soil carry either two homologous or two nonhomologous catechol 2,3-oxygenase genes. Journal of Bacterio-logy 168:878–885
    [Google Scholar]
  5. Collinsworth W. L., Chapman P. J., Dagley S. 1973; Stereospecific enzymes in the degradation of aromatic compounds by Pseudomonas putida. Journal of Bacteriology 113:922–931
    [Google Scholar]
  6. Doten R. C., Gregg L. A., Ornston L. N. 1987; Influence of catBCE sequence on the phenotypic reversion of a pcaE mutation in Acinetobacter calcoacetkus. Journal of Bacteriology 169:3175–3180
    [Google Scholar]
  7. Ensley B. D., Ratzkin B. J., Osslund T. D., Simon M. J., Wackett L. P., Gibson D. T. 1983; Expression of naphthalene oxidation genes in Escherichia coli results in biosynthesis of indigo. Science 222:167–169
    [Google Scholar]
  8. Franklin F. C. H., Williams P. A. 1980; Construction of a partial diploid for the degradative pathway encoded by the TOL plasmid (pWW0) from Pseudomonas putida mt-2: evidence for the positive nature of the regulation by the xylR gene. Molecular and General Genetics 177:321–328
    [Google Scholar]
  9. Grinter N. J. 1983; A broad host range cloning vector transposable to various replicons. Gene 21:133–143
    [Google Scholar]
  10. Guerry P., LeBlanc D. J., Falkow S. 1973; General method for isolation of plasmid deoxyribonucleic acid. Journal of Bacteriology 116:1064–1066
    [Google Scholar]
  11. Harayama S., Rekik M. 1990; The meta cleavage operon of TOL degradative plasmid pWW0 comprises 13 genes. Molecular and General Genetics 112:113–120
    [Google Scholar]
  12. Harayama S., Rekik M., Wubbolts M., Rose K., Leppik R. A., Timmis K. N. 1989; Characterization of five genes in the upper pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products. Journal of Bacteriology 171:5048–5055
    [Google Scholar]
  13. Holmes D. S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 114:193–197
    [Google Scholar]
  14. Kaphammer B., Kukor J. J., Olsen R. H. 1990; Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4. Journal of Bacteriology 172:2280–2286
    [Google Scholar]
  15. Keil H., Williams P. A. 1985; A new class of TOL plasmid deletion mutants in Pseudomonas putida MT15 and their reversion by tandem gene amplification. Journal of General Microbiology 131:1023–1033
    [Google Scholar]
  16. Keil H., Keil S., Pickup R. W., Williams P. A. 1985a; Evolutionary conservation of genes coding for meta pathway enzymes within TOL plasmids pWW0 and pWW53. Journal of Bacteriology 164:887–895
    [Google Scholar]
  17. Keil H., Lebens M. R., Williams P. A. 1985b; TOL plasmid pWW15 contains two nonhomologous, independently regulated catechol 2,3-oxygenase genes. Journal of Bacteriology 163:248–255
    [Google Scholar]
  18. Keil H., Saint C. M., Williams P. A. 1987a; Gene organization of the first catabolic operon of TOL plasmid pWW53: production of indigo by the xylA gene. Journal of Bacteriology 169:764–770
    [Google Scholar]
  19. Keil H., Keil S., Williams P. A. 1987b; Molecular analysis of regulatory and structural xyl genes of the TOL plasmid pWW53-4. Journal of General Microbiology 133:1149–1158
    [Google Scholar]
  20. Kunz D. A., Chapman P. J. 1981; Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida arvilla) mt-2: evidence for new functions of the TOL (pWW0) plasmid. Journal of Bacteriology 146:179–191
    [Google Scholar]
  21. Lebens M. R., Williams P. A. 1985; Complementation of deletion and insertion mutants of TOL plasmid pWW0: regulatory implications and location of xylC gene. Journal of General Microbiology 131:3261–3269
    [Google Scholar]
  22. Mermod N., Harayama S., Timmis K. N. 1986; New route to bacterial production of indigo. Biotechnology 4:321–324
    [Google Scholar]
  23. Meulien P., Downing R. G., Broda P. 1981; Excision of the 40 kbp segment of the TOL plasmid from Pseudomonas putida mt-2 involves direct repeats. Molecular and General Genetics 184:97–101
    [Google Scholar]
  24. Murray N. E., Brammar W. J., Murray K. 1977; Lambdoid phages that simplify the recovery of in vitro recombinants. Molecular and General Genetics 150:53–61
    [Google Scholar]
  25. Negoro S., Nakamura S., Okada H. 1984; DNA-DNA hybridization analysis of nylon oligomer-degradative plasmid pOAD2: identification of the DNA region analogous to the nylon oligomer degradation gene. Journal of Bacteriology 158:419–424
    [Google Scholar]
  26. Osborne D. J., Pickup R. W., Williams P. A. 1988; The presence of two homologous meta pathway operons on TOL plasmid pWW53. Journal of General Microbiology 134:2965–2975
    [Google Scholar]
  27. Pickup R. W., Williams P. A. 1982; Spontaneous deletions in the TOL plamid pW W20 which give rise to the B3 regulatory mutants of Pseudomonas putida MT20. Journal of General Microbiology 128:1385–1390
    [Google Scholar]
  28. Pickup R. W., Lewis R. J., Williams P. A. 1983; Pseudomonas sp MT14, a soil isolate which contains two large catabolic plasmids, one a TOL plasmid and one coding for phenylacetate catabolism and mercury resistance. Journal of General Microbiology 129:153–158
    [Google Scholar]
  29. Sala-Trepat J.-M., Evans W. C. 1971; The meta cleavage of catechol by Azotobacter species: 4-oxalocrotonate pathway. Euro-pean Journal of Biochemistry 20:400–413
    [Google Scholar]
  30. Spooner R. A., Lindsay K., Franklin F. C. H. 1986; Genetic, functional and sequence analysis of the xylR and xylS regulatory genes of the TOL plasmid pWW0. Journal of General Microbiology 132:1347–1358
    [Google Scholar]
  31. Stephens G. M., Dalton H. 1987; The effect of lipophilic weak acids on the stability of TOL plasmids in Pseudomonas putida. Journal of General Microbiology 133:1891–1899
    [Google Scholar]
  32. Stephens G. M., Dalton H. 1989; The effect of lipophilic weak acids on the stability of TOL plasmids in Pseudomonas putida MT15 during growth in chemostat cultures. FEMS Microbiology Letters 55:175–180
    [Google Scholar]
  33. Wheatcroft R., Williams P. A. 1981; Rapid methods for the study of both stable and unstable plasmids in Pseudomonas. Journal of General Microbiology 124:433–437
    [Google Scholar]
  34. Williams P. A., Worsey M. J. 1976; Ubiquity of plasmids coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. Journal of Bacteriology 125:818–828
    [Google Scholar]
  35. Williams P. A., Taylor S. D., Gibb L. E. 1988; Loss of the toluene-xylene catabolic genes of TOL plasmid pWW0 during growth of Pseudomonas putida mt-2 is due to a selective growth advantage of ‘cured’ segregants. Journal of General Microbiology 134:2039–2048
    [Google Scholar]
  36. Worsey M. J., Williams P. A. 1975; Metabolism of toluene and xylenes by Pseudomonas putida arvilla) mt-2: evidence for a new function of the TOL plasmid. Journal of Bacteriology 124:7–13
    [Google Scholar]
  37. Worsey M. J., Williams P. A. 1977; Characterization of a spontaneously occurring mutant of the TOL20 plasmid in Pseudomonas putida MT20: possible regulatory implications. Journal of Bacteriology 130:1149–1158
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-12-2831
Loading
/content/journal/micro/10.1099/00221287-137-12-2831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error