1887

Abstract

Summary: A polyphasic approach to bacterial taxonomy attempts to integrate phylogenetic relationships with phenotypic marker analysis. This study describes the application of membrane fatty acids as a phenotypic marker for methylotrophs. Detailed phospholipid, ester-linked fatty acid (PLFA) profiles are reported for 17 methylotrophic eubacterial strains. These profiles included verification of double bond positions and geometries, both critical features for this analysis. Multivariate cluster analysis was used to indicate groupings of these strains along with literature values of both methylotrophs and non-methylotrophs based on the PLFA phenotype. Like many phenotypic characteristics, PLFA profiles were influenced by environmental conditions. The instabilities displayed, however, were predictable from physiological studies including increased and cyclopropyl/ ratios. Cluster analysis of PLFA profiles generated by separate investigators with different culture conditions indicated reproducibility by strain and species. The PLFA phenotype relationships compare favourably with phylogenetic associations based on 16S rRNA data for methylotrophs and will continue to be a valuable phenotypic marker for Proteobacteria taxonomy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-11-2631
1991-11-01
2021-04-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/11/mic-137-11-2631.html?itemId=/content/journal/micro/10.1099/00221287-137-11-2631&mimeType=html&fmt=ahah

References

  1. Ando S., Kato S.-I., Komagata K. 1989; Phylogenetic diversity of methanol-utilizing bacteria deduced from their 5S ribosomal RNA sequences. Journal of General and Applied Microbiology 35:351–361
    [Google Scholar]
  2. Bligh E. G., Dyer W. M. 1959; A rapid method of lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 35:911–917
    [Google Scholar]
  3. Brondz I., Olsen I. 1986; Microbial chemotaxonomy. Chroma-tography, electrophoresis, and relevant profiling techniques. Journal of Chromatography 379:367–411
    [Google Scholar]
  4. Bulygina E. S., Galchenko V. F., Govorukhina N. I., Netrusov A. I., Nikitin D. I., Trotsenko Y. A., Chumakov K. M. 1990; Taxonomic studies on methylotrophic bacteria by 5S ribosomal RNA sequencing. Journal of General Microbiology 136:441–446
    [Google Scholar]
  5. Christie W. W. 1989 Gas Chromatography and Lipids Ayr: The Oily Press;
    [Google Scholar]
  6. Dalton H., Whittenbury R. 1976; The acetylene reduction technique as an assay for nitrogenase activity in the methane oxidizing bacterium Methylococcus capsulatus BATH. Archives of Microbiology 109:147–151
    [Google Scholar]
  7. Devereux R., Delaney M., Widdel F., Stahl D. A. 1989; Natural relationships among sulfate-reducing eubacteria. Journal of Bacteriology 171:6689–6695
    [Google Scholar]
  8. Dowling N. J. E., Widdel F., White D. C. 1986; Phospholipid, ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulfide-forming bacteria. Journal of General Microbiology 132:1815–1825
    [Google Scholar]
  9. Edlund A., Nichols P. D., Roffey R., White D. C. 1985; Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. Journal of Lipid Research 26:982–988
    [Google Scholar]
  10. Goodfellow M., Minnikin D. E. (editors) 1985 Chemical Methods in Bacterial Systematics London: Academic Press;
    [Google Scholar]
  11. Green P. N., Bousfield I. J. 1982; A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. Journal of General Microbiology 128:623–638
    [Google Scholar]
  12. Guckert J. B., White D. C. 1988; Phospholipid, ester-linked fatty acid analysis in microbial ecology. Proceedings of the Fourth International Symposium of Microbial Ecology455–459 Megusar F., Gantor M. Ljubljana: Slovene Society for Microbiology;
    [Google Scholar]
  13. Guckert J. B., Antworth C. P., Nichols P. D., White D. C. 1985; Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiology Ecology 31:147–158
    [Google Scholar]
  14. Guckert J. B., Hood M. A., White D. C. 1986; Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Applied and Environmental Microbiology 52:794–801
    [Google Scholar]
  15. Guckert J. B., Ringelberg D. B., White D. C. 1987; Biosynthesis of trans fatty acids from acetate in the bacterium, Pseudomonas atlantica . Canadian Journal of Microbiology 33:748–754
    [Google Scholar]
  16. Hood D. W., Dow C. S., Green P. N. 1987; DNA:DNA hybridization studies on the pink-pigmented facultative methylotrophs. Journal of General Microbiology 133:709–720
    [Google Scholar]
  17. Jahnke L. L., Nichols P. D. 1986; Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions. Journal of Bacteriology 167:238–242
    [Google Scholar]
  18. Jenkins O., Jones D. 1987; Taxonomic studies of some Gram-negative methylotrophic bacteria. Journal of General Microbiology 133:453–473
    [Google Scholar]
  19. Kates M. 1986 Techniques of Lipidology: Isolation, Analysis and Identification of Lipids, 2nd. Amsterdam: Elsevier;
    [Google Scholar]
  20. Murray R. G. E., Brenner D. J., Colwell R. R., de Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stacke-brandt E., Zavarzin G. A. 1990; Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. International Journal of Systematic Bacteriology 40:213–215
    [Google Scholar]
  21. Nichols P. D., Smith G. A., Antworth C. P., Hanson R. S., White D. C. 1985; Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methane-oxidizing bacteria. FEMS Microbiology Ecology 31:327–335
    [Google Scholar]
  22. Nichols P. D., Guckert J. B., White D. C. 1986a; Determination of monosaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. Journal of Microbiological Methods 5:49–55
    [Google Scholar]
  23. Nichols P. D., Stulp B. K., Jones J. G., White D. C. 1986b; Comparison of fatty acid content and DNA homology of the filamentous gliding bacteria Vitreoscilla, Flexibacter, Filibacter . Archives of Microbiology 146:1–6
    [Google Scholar]
  24. Pfiffner S. M., Ringelberg D. B., Tunlid A., Tyndall R. L. 1988; Detection of Legionella infection of Naegleria by phospholipid fatty acid biomarkers. Abstracts of the Annual Meeting of the American Society for Microbiology Q-29, Miami Beach, Fl8–13May 1988
    [Google Scholar]
  25. Ratledge C., Wilkinson S. G. (editors) 1988 Microbial Lipids London: Academic Press;
    [Google Scholar]
  26. Ringelberg D. B., Davis J. D., Smith G. A., Pfiffner S. M., Nichols P. D., Nickels J. S., Henson J. M., Wilson J. T., Yates M., Kampbell D. H., Read H. W., Stocksdale T. T., White D. C. 1989; Validation of signature polar lipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials. FEMS Microbiology Ecology 62:39–50
    [Google Scholar]
  27. Tornabene T. G. 1985; Lipid analysis and the relationship to chemotaxonomy. Methods in Microbiology 18:209–234
    [Google Scholar]
  28. Tsien H. C, Bratina B. J., Tsuji K., Hanson R. S. 1990; Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Applied and Environmental Microbiology 56:2858–2865
    [Google Scholar]
  29. Tsuji K., Tsien H. C, Hanson R. S., DePalma S. R., Scholtz R., Laroche S. 1990; 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. Journal of General Microbiology 136:1–10
    [Google Scholar]
  30. Urakami T., Komagata K. 1979; Cellular fatty acid composition and coenzyme Q system in Gram-negative methanol-utilizing bacteria. Journal of General and Applied Microbiology 25:343–360
    [Google Scholar]
  31. Urakami T., Tamaoka J., Komagata K. 1985; DNA base composition and DNA-DNA homologies of methanol-utilizing bactria. Journal of General and Applied Microbiology 31:243–253
    [Google Scholar]
  32. Weaver T. L., Patrick M. A., Dugan P. R. 1975; Whole-cell and membrane lipids of the methylotrophic bacterium Methylosinus trichosporium . Journal of Bacteriology 124:602–605
    [Google Scholar]
  33. White D. C, Bobbie R. J., Herron J. S., King J. D., Morrison S. J. 1979a; Biochemical measurements of microbial mass and activity from environmental samples. Native Aquatic Bacteria: Enumeration, Activity and Ecology, ASTM STP 69569–81 Costerton J. W., Colwell R. R. Philadelphia: American Society for Testing and Materials;
    [Google Scholar]
  34. White D. C, Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979b; Determination of sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62
    [Google Scholar]
  35. Woese C. R. 1987; Bacterial evolution. Microbiological Reviews 51:221–271
    [Google Scholar]
  36. Wold S., Albano C. A., Dunn W. J. III, Edlund U., Esbensen K., Geladi P., Hellberg S., Johansson E., Lindberg W., Sjòstròm M. 1984; Multi variate data analysis in chemistry. Proceedings NATO Advanced Study Institute on Chemometrics1–79 Kowalski B. R. Dordrecht, Holland: Reidel Publishing Co;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-11-2631
Loading
/content/journal/micro/10.1099/00221287-137-11-2631
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error