1887

Abstract

Alkaliphilic species that grow at pH 10·5 must cope with a low protonmotive force (– 50 mV) due to a reversed transmembrane pH gradient at least 2 pH units more acid inside. Here we demonstrate that strictly alkaliphilic RAB and two strains of (ATCC 27467 and DSM 485) grow exponentially in batch cultures with a doubling time of less than 1 h in 100 m buffered medium, while the actual medium pH remains above 10·2. The ATCC strain continued to grow rapidly for at least 7 h, but the growth rate of the DSM strain declined dramatically after 3 h. However, both the strains, RAB and facultatively alkaliphilic OF4 were readily maintained for at least 24 h between pH 10·4 and 10·6 in a chemostat where nutrients were constantly replenished. A critical nutrient may be limiting in batch cultures of the DSM strain of . The facultative alkaliphile grew equally well in batch cultures at an initial pH of 7·5 or 10·5. Its molar growth yield (23 mg dry wt mmol) on malate ( ) was the same at the two pH values and was comparable to for grown at neutral pH. RAB and ATCC 27467 grown at pH 10·5 also showed values at least as high as the neutralphile, indicating efficient use of the energy source even at low protonmotive force. Moreover, the phosphorylation potential of OF4 grown at pH 7·5 (45·2 kJ mol)or pH 10·5 (46 kJ mol) was in a conventional range for bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-10-2375
1991-10-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/10/mic-137-10-2375.html?itemId=/content/journal/micro/10.1099/00221287-137-10-2375&mimeType=html&fmt=ahah

References

  1. Dunkley E. A. Jr, Guffanti A. A., Clejan S., Krulwich T. A. 1991; Facultative alkaliphiles lack fatty acid desaturase activity and lose the ability to grow at near neutral pH when supplemented with an unsaturated fatty acid. Journal of Bacteriology 173:1331–1334
    [Google Scholar]
  2. Fritze D., Flossdorf J., Claus D. 1990; Taxonomy of alkaliphilic Bacillus strains. International Journal of Systemetic Bacteriology 40:92–97
    [Google Scholar]
  3. Guffanti A. A., Susman P., Blanco R., Krulwich T. A. 1978; The protonmotive force and a-aminoisobutyric acid transport in an obligately alkalophilic bacterium. Journal of Biological Chemistry 253:708–715
    [Google Scholar]
  4. Guffanti A. A., Blanco R., Benenson R. A., Krulwich T. A. 1980; Bioenergetic properties of alkaline-tolerant and alkalophilic strains of Bacillus firmus. Journal of General Microbiology 119:79–86
    [Google Scholar]
  5. Guffanti A. A., Bornstein R. F., Krulwich T. A. 1981; Oxidative phosphorylation by membrane vesicles from Bacillus alcalophilus. Biochimica et Biophysica Acta 635:619–630
    [Google Scholar]
  6. Guffanti A. A., Fuchs R. T., Schneier M., Chiu E., Krulwich T. A. 1984; A transmembrane electrical potential generated by respiration is not equivalent to a diffusion potential of the same magnitude for ATP synthesis by Bacillus firmus RAB. Journal of Biological Chemistry 259:2971–2975
    [Google Scholar]
  7. Guffanti A. A., Finkelthal O., Hicks D. B., Falk L., Sidhu A., Garro A., Krulwich T. A. 1986; Isolation and characterization of new facultatively alkalophilic strains of Bacillus species. Journal of Bacteriology 167:766–773
    [Google Scholar]
  8. Hicks D. B., Krulwich T. A. 1990; Purification and reconstitu-tion of the F1 F0-ATP synthase from alkaliphilic Bacillus firmus OF4. Journal of Biological Chemistry 265:20547–20554
    [Google Scholar]
  9. Hoffmann A., Dimroth P. 1990; The ATPase of Bacillus alcalophilus: Purification and properties of the enzyme. European Journal of Biochemistry 194:423–430
    [Google Scholar]
  10. Hoffmann A., Laubinger W., Dimroth P. 1990; Na+-coupled ATP synthesis in Propionigenium modestum: is it a unique system?. Biochimica et Biophysica Acta 1018:206–210
    [Google Scholar]
  11. Ivey P. M., Hicks D. B., Guffanti A. A., Sobel G., Krulwich T. A. 1990; The problem of the electrochemical proton potential in alkaliphilic bacteria. Mosbach Colloquium 41:105–113
    [Google Scholar]
  12. Kashket E. R. 1982; Stoichiometry of the H+-ATPase of growing and resting, aerobic Escherichia coli. Biochemistry 21:5534–5538
    [Google Scholar]
  13. Kitada M., Horikoshi K. 1987; Bioenergetic properties of alkalophilic Bacillus sp. strain C-59 on an alkaline medium containing K2CO3. Journal of Bacteriology 169:5761–5765
    [Google Scholar]
  14. Kitada M., Onda K., Horikoshi K. 1989; The sodium/proton antiport system in a newly isolated alkalophilic Bacillus sp. Journal of Bacteriology 171:1879–1884
    [Google Scholar]
  15. Krulwich T. A., Guffanti A. A. 1989a; Alkalophilic bacteria. Annual Review of Microbiology 43:435–463
    [Google Scholar]
  16. Krulwich T. A., Guffanti A. A. 1989b; The Na+ cycle of extreme alkalophiles: a secondary Na+/H+ antiporter and Na+/so- lute symporters. Journal of Bioenergetics and Biomembranes 21:663–677
    [Google Scholar]
  17. Krulwich T. A., Federbush J. G., Guffanti A. A. 1984; Presence of a nonmetabolizable solute that is translocated with Na+ enhances Na+-dependent pH homeostasis in an alkalophilic Bacillus. Journal of Biological Chemistry 260:4055–4058
    [Google Scholar]
  18. Krulwich T. A., Hicks D. B., Seto-Young D., Guffanti A. A. 1988; The bioenergetics of alkalophilic bacilli. CRC Critical Reviews in Microbiology 16:15–36
    [Google Scholar]
  19. Kudo T., Hino M., Kitada M., Horikoshi K. 1990; DNA sequences required for the alkalophily of Bacillus sp. strain C-125 are located close together on its chromosomal DNA. Journal of Bacteriology 172:7282–7283
    [Google Scholar]
  20. LeBel D., Poirier G. G., Beaudoin A. R. 1978; A convenient method for the ATPase assay. Analytical Biochemistry 85:86–89
    [Google Scholar]
  21. Lewis R. J., Belkina S., Krulwich T. A. 1980; Alkalophiles have much higher cytochrome contents than conventional bacteria and their own non-alkalophilic mutant derivatives. Biochemical and Biophysical Research Communications 95:857–863
    [Google Scholar]
  22. Lewis R. J., Krulwich T. A., Reynafarje B., Lehninger A. L. 1983; Respiration-dependent proton translocation in alkalophilic Bacillus firmus RAB and its non-alkalophilic mutant derivative. Journal of Biological Chemistry 258:2109–2111
    [Google Scholar]
  23. Maloney P. C. 1983; Relationship between phosphorylation potential and electrochemical H+ gradient during glycolysis in Streptococcus lactis. Journal of Bacteriology 153:1461–1470
    [Google Scholar]
  24. Matsukura H., Imae Y. 1987; Na+ modulates the K+ permeability and the membrane potential of alkalophilic Bacillus. Biochimica et Biophysica Acta 904:301–308
    [Google Scholar]
  25. Mitchell P. 1961; Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature, London 191:144–148
    [Google Scholar]
  26. Ritchie R. J., Gibson J. 1987; Permeability of ammonia and amines in Rhodobacter sphaeroides and Bacillus firmus. Archives of Biochemistry and Biophysics 258:332–341
    [Google Scholar]
  27. Rohde M., Mayer F., Hicks D. B., Krulwich T. A. 1989; Immunoelectron microscopic localization of the F1 F0ATPase (ATP synthase) on the cytoplasmic membrane of alkalophilic Bacillus firmus RAB. Biochimica et Biophysica Acta 985:233–235
    [Google Scholar]
  28. Rottenberg H. 1984; Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations. Journal of Membrane Biology 81:127–138
    [Google Scholar]
  29. Schuldiner S., Kaback H. R. 1975; Membrane potentials and active transport in membrane vesicles from E. coli. Biochemistry 14:5451–5461
    [Google Scholar]
  30. Spizizen J. 1958; Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America 441072–1078
    [Google Scholar]
  31. Stouthamer A. H. 1969; Determination and significance of molar growth yields. Methods in Microbiology 1:629–663
    [Google Scholar]
  32. Zilberstein D., Agmon V., Schuldiner S., Padan E. 1982; The sodium/proton antiporter is part of the pH homeostasis mechanism in Escherichia coli. Journal of Biological Chemistry 257:3687–3691
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-10-2375
Loading
/content/journal/micro/10.1099/00221287-137-10-2375
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error