1887

Abstract

The growth of in a mineral salts solution with carbon dioxide and iron sulphide was studied by acridine orange stained direct count and most probable number techniques. grew to 2 × 10 cells ml with a generation time of 8·3 h under aerobic gradient conditions. The optimum temperature for growth was 20 °C. No growth was obtained under anaerobic conditions, or without carbon dioxide. A method was developed for measuring the length of the stalks formed by . When growing exponentially, the bacterium was freeliving, without stalks, and motile with one polar flagellum. A net production of stalk per cell began when the cell number exceeded 6 × 10 ml if the pH exceeded 6. This occurred when growth entered the stationary phase. The stalk length increased from 3 × 10 μm ml (detection limit) to 1·8 × 10 μm ml, during a 400 h growth experiment. There was no stalk formation at growth conditions where ferrous iron was stable, suggesting that stalk formation may be a protection mechanism against an increasing reducing capacity of ferrous iron as it becomes unstable in an environment that becomes oxidized. The results indicate that favourable growth conditions for may be those present in reduced ground waters, rather than those in ditches, drainage tubes, wells, etc., where stalk-forming can usually be found.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-9-1675
1990-09-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/9/mic-136-9-1675.html?itemId=/content/journal/micro/10.1099/00221287-136-9-1675&mimeType=html&fmt=ahah

References

  1. Balashova V. V. 1967; Structure of the ‘stalk’ fibres in a laboratory culture of Gallionella filamenta. Microbiology USSR 36:1050–1053
    [Google Scholar]
  2. Barbic F. F., Bracilovic D. M., Djindjic V. M., Djorelijevski S. M., Zivkovic K. S., Kranjincanic B. V. 1974; Iron and manganese bacteria in Ranney wells. . Water Research 8:895–898
    [Google Scholar]
  3. Cullimore R. D., Mccann A. E. 1977; The identification, cultivation and control of iron bacteria in ground water. In Aquatic Microbiology pp. 219–261 Skinner F. A., Shenean J. M. Edited by New York: Academic Press;
    [Google Scholar]
  4. Garrels R. M., Christ C. L. 1965 Solutions, Minerals and Equilibrium pp. 172–229 San Francisco:: Freeman, Cooper & Co.;
    [Google Scholar]
  5. Ghiorse W. G. 1984; Biology of iron-and manganese-depositing bacteria. Annual Review of Microbiology 38:515–550
    [Google Scholar]
  6. Ghiorse W. G. 1986; Biology of Leptothrix, Gallionella and Crenothrix, relation to plugging. In Proceedings of the 1986 International Symposium on Biofouled Aquifers: Prevention and Restoration pp. 97–108 Betheseda, Maryland:: American Water Resources Association.;
    [Google Scholar]
  7. Hanert H. H. 1967; Untersuchungen zur Isolierung, Stoffwechsel-physiologie und Morphologie von Gallionella ferruginea Ehrenberg. Archiv für Mikrobiologie 60:348–376
    [Google Scholar]
  8. Hannert H. H. 1970; Struktur und Wachstum von Gallionellaferruginea Ehrenberg am naturlichen Standort in den ersten 6 Stunden der Entwicklung. Archiv für Mikrobiologie 75:10–24
    [Google Scholar]
  9. Hannert H. H. 1973; Quantifizierung der Massentwicklung des Eisensbakteriums Gallionella ferruginea unternaturlichen Bedingungen. Archiv für Mikrobiologie 88:225–243
    [Google Scholar]
  10. Hannert H. H. 1974; Untersuchungen zur individuellen Entwick-lungskinetik von Gallionella ferruginea in statischer Mikrokultur. Archiv für Mikrobiologie 96:59–74
    [Google Scholar]
  11. Hanert H. H. 1981; The genus Gallionella. . In The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria 1 pp. 509–515 Starr M. P., Trüper H. G., Balows A., Schlegel H. G. Edited by Berlin: Springer;
    [Google Scholar]
  12. Hanert H. H. 1989; Budding and/or appendeged bacteria. In Bergeys’s Manual of Systematic Bacteriology 3 pp. 1974–1979 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  13. Hirsch P., Pankratz S. H. 1970; Study of bacterial populations in natural environments by use of submerged electron microscope grids. Zeitschrift für allgemeine Mikrobiologie 10:589–605
    [Google Scholar]
  14. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33:1225–1228
    [Google Scholar]
  15. HÄsselbarth U., LÜdeman D. 1972; Biological incrustation of wells due to mass development of iron and manganese bacteria. Journal of Water Treatment and Examination 21:20–29
    [Google Scholar]
  16. Ivarson K. C., Sojak M. 1978; Microorganisms and ochre deposits in field drains of Ontario. Canadian Journal of Soil Science 58:1–17
    [Google Scholar]
  17. Kucera S., Wolfe R. S. 1957; A selective enrichment method for Gallionella ferruginea. Journal of Bacteriology 74:344–349
    [Google Scholar]
  18. Lütters S., Hanert H. H. 1989; The ultrastructure of chemolithoautotrophic Gallionella ferruginea and Thiobacillus ferrooxidans as revealed by chemical fixation and freeze-etching. Archives of Microbiology 151:245–251
    [Google Scholar]
  19. Mah R. A., Smith M. R. 1981; The methanogenic bacteria. In The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria 1 pp. 865–893 Starr M. P., Trüper H. G., Balows A., Schlegel H. G. Edited by Berlin: Springer;
    [Google Scholar]
  20. Marydanyan S. S., Balashova V. V. 1971; State of iron in the filaments of Gallionella. Microbiology USSR 40:104–106
    [Google Scholar]
  21. NiemelÄ S. 1983; Statistical evaluation of results from quantitative microbiological examinations. Nordic Committee on Food Analysis Report no.1, 2nd edn. (ISSN 0281-5303)
    [Google Scholar]
  22. Pedersen K., Hallbeck E.-L. 1985; Rapid biofilm development in deep ground water by Gallionella ferruginea. Vatten 41:263–265
    [Google Scholar]
  23. Ridgeway H. F., Means E. G., Olson B. H. 1981; Iron bacteria in drinking-water distribution systems: elemental analysis of Gallionella stalks, using X-ray energy-dispersive microanalysis. Applied and Environmental Microbiology 41:288–297
    [Google Scholar]
  24. Stumm W., Morgan J. J. 1981 Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters. New York:: John Wiley & Sons.;
    [Google Scholar]
  25. Vatter A. E., Wolfe R. S. 1957; Electron microscopy of Gallionella ferruginea. Journal of Bacteriology 72:248–252
    [Google Scholar]
  26. Wheatley R. E. 1988; Ochre deposits and associated bacteria in some field drains in Scotland. Journal of Soil Science 39:253–264
    [Google Scholar]
  27. Wolfe R. S. 1964; Iron and manganese bacteria. In Principles and Applications in Aquatic Microbiology pp. 82–97 Heukelekian H., Dondero N. C. Edited by New York: John Wiley & Sons;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-9-1675
Loading
/content/journal/micro/10.1099/00221287-136-9-1675
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error