1887

Abstract

The shuttle vector pBLA was introduced into intact cells of by electrotransformation. Several parameters of this procedure such as voltage and cell concentration were analysed. Optimal conditions gave an efficiency of 10 transformants per μg of DNA. Two recalcitrant strains could be electrotransformed when an ampicillin pretreatment step was used. Electrotransformation experiments using DNAase or different structural forms of plasmid DNA showed that the electrotransformation process is quite different from natural transformation involving competence development. Restriction–modification-proficient could be efficiently electrotransformed with pBLA DNA isolated from This restriction–modification system therefore seems to be overcome by electrotransformation. Thus electrotransformation may efficiently replace the protoplast bacterial transformation method.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-10-2107
1990-10-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/10/mic-136-10-2107.html?itemId=/content/journal/micro/10.1099/00221287-136-10-2107&mimeType=html&fmt=ahah

References

  1. Avery O.T., Mcleod C.M., McCarty M. 1944; Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a DNA fraction isolated from pneumococcus type III. Journal of Experimental Medecine 89:137–158
    [Google Scholar]
  2. Bibb M.J., Ward J.M., Hopwood D.A. 1978; Transformation of plasmid DNA into Streptomyces at high frequency. Nature; London: 274398–400
    [Google Scholar]
  3. Bonamy C., Guyonvarch A., Reyes O., David F., Leblond G. 1990; Interspecies electro-transformation in corynebacteria. FEMS Microbiology Letters 66:263–270
    [Google Scholar]
  4. Bonnassie S., Gasc A.M., Sicard A.M. 1989; Transformation by electroporation of two gram-positive bacteria: Streptococcus pneumoniae and Brevibacterium lactofermentum. In Genetic Transformation and Expression pp 71–75 Butler L.O., Harwood C., Moseley B.E.B. Edited by Hampshire: Intercept;
    [Google Scholar]
  5. Bonnassie S., Oreglia J., Trautwelter A., Sicard A.M. 1990; Isolation and characterization of a restriction and modification deficient mutant of Brevibacterium lactofermentum. FEMS Microbiology Letters in the Press
    [Google Scholar]
  6. Chang S., Cohen S.N. 1979; High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Molecular and General Genetics 168:111–115
    [Google Scholar]
  7. Chassy B.M., Mercenier A., Flickinger J. 1988; Transformation of bacteria by electroporation. Trends in Biotechnology 6:303–309
    [Google Scholar]
  8. Dower W.J., Miller J.F., Ragsdale C.W. 1988; High efficiency transformation of Escherichia coliby high voltage electroporation. Nucleic Acids Research 16:6127–6145
    [Google Scholar]
  9. Ish-Horowicz D., Burke J.F. 1981; Rapid and efficient cosmid vector cloning. Nucleic Acids Research 9:2989–2998
    [Google Scholar]
  10. Katsumata R., Ozaki A., Oka T., Furuya A. 1984; Protoplast transformation of glutamate producing bacteria with plasmid DNA. Journal of Bacteriology 159:306–311
    [Google Scholar]
  11. Langella P., Chopin A. 1989; Effect of restriction-modification systems on transfer of foreign DNA in Lactococcus lactis subsp.lactis. FEMS Microbiology Letters 59:301–306
    [Google Scholar]
  12. MacNeil D.J. 1987; Introduction of plasmid DNA into Streptomyces lividans by electroporation. FEMS Microbiology Letters 42:239–244
    [Google Scholar]
  13. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  14. Maniatis T., Fritsch E.F., sambrook J. 1982 Molecular Cloning, a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Miller J.F., Dower W.J., Tompkins L.S. 1988; High-voltage electroporation of bacteria: genetic transformation of Campylobacter jejuni with plasmid DNA. Proceedings of the National Academy of Sciences of the United States of America 85:856–860
    [Google Scholar]
  16. Ozaki A., Katsumata R., Oka T., Furuya A. 1984; Functional expression of the genes of Escherichia coli in gram-positive Corynebacterium glutamicum. Molecular and General Genetics 196:175–178
    [Google Scholar]
  17. Schell J., Glover S.W. 1966; The effect of heat on host- controlled restriction of phage λ in Escherichia coli K(P1). Journal of General Microbiology 45:61–72
    [Google Scholar]
  18. Trieu-cuot P., Courvalin P. 1983; Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3'5"-aminoglyco- side phosphotransferase type III. Gene 23:331–341
    [Google Scholar]
  19. Wirth R., Friesenegger A., Fiedler S. 1989; Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation. Molecular and General Genetics 216:175–177
    [Google Scholar]
  20. Wolf H., Puhler A., Neumann E. 1989; Electrotransformation of intact and osmotically sensitive cells of Corynebacterium glutamicum. Applied Microbiology and Biotechnology 30:283–289
    [Google Scholar]
  21. Yeh P., Oreglia J., Sicard A.M. 1985; Transfection of Corynebacterium lilium protoplasts. Journal of General Microbiology 131:3179–3183
    [Google Scholar]
  22. Yeh P., Oreglia J., Prevots F., Sicard A.M. 1986; A shuttle vector system for Brevibacterium lactofermentum. Gene 47:301–306
    [Google Scholar]
  23. Yoshihama M., Higashiro K., Rao E.A., Akedo M., Shanabruch W.G., Follettie M.T., Walker G.C., Sinskey A.J. 1985; Cloning vector for Corynebacterium glutamicum. Journal of Bacteriology 162:591–597
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-10-2107
Loading
/content/journal/micro/10.1099/00221287-136-10-2107
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error