1887

Abstract

Addition of competence factor extracts to trigger competence in a culture of induced an increase in the intracellular pH and the Na content of the bacteria without any change in the K pool or in the membrane potential. These ionic shifts were concomitant with a stimulation of glycolysis that resulted in an enhanced ATP pool. Thus, in transforming conditions, at extracellular pH 7·8, competent bacteria presented a particularly high energetic state resulting from an increase in ∆pH and in the ATP pool, associated with an enhanced Na content. These features are discussed in the context of homeostasis regulation in response to an environmental stimulus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-8-2189
1989-08-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/8/mic-135-8-2189.html?itemId=/content/journal/micro/10.1099/00221287-135-8-2189&mimeType=html&fmt=ahah

References

  1. Barbé J., Villaverde A., Guerrero R. 1983; Evolution of cellular ATP concentration after UV- mediated induction of SOS system in Escherichia coli.. Biochemical and Biophysical Research Communications 117:556–561
    [Google Scholar]
  2. Bassilana M., Damiano E., Leblanc G. 1984; Relationships between the Na+-H+ antiport activity and the components of the electrochemical proton gradient in Escherichia coli membrane vesicles.. Biochemistry 23:1015–1022
    [Google Scholar]
  3. Booth I.R. 1985; Regulation of cytoplasmic pH in bacteria.. Microbiological Reviews 49:359–378
    [Google Scholar]
  4. Castle A.M., Macnab R.M., Schulman R.G. 1986; Measurement of intracellular sodium concentration and sodium transport in Escherichia coli by 23Na nuclear magnetic resonance.. Journal of Biological Chemistry 261:3288–3294
    [Google Scholar]
  5. Clavé C., Morrison D.A., Trombe M.C. 1987; Is DNA transport driven by the proton electrochemical potential difference in the naturally transformable bacterium, Streptococcus pneumoniae.. Bioelectrochemistry and Bioenergetics 17:269–276
    [Google Scholar]
  6. Ezra F.S., Lucas D.S., Mustacich R.V., Russel A.F. 1983; Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of anaerobic glucose metabolism and lactate transport in Staphylococcus aureus cells.. Biochemistry 22:3841–3849
    [Google Scholar]
  7. Goldberg E.B., Arbel T., Chen J., Karpel R., Mackie G.A., Schuldiner S. 1987; Characterization of a Na+/H+ antiporter gene of Escherichia coli.. Proceedings of the National Academy of Sciences of the United States of America 84:2615–2619
    [Google Scholar]
  8. Heefner D.L., Harold F.M. 1982; ATP-driven sodium pump in Streptococcus faecalis.. Proceedings of the National Academy of Sciences of the United States of America 79:2798–2802
    [Google Scholar]
  9. Horne D., Plotch S., Tomasz A. 1977; Cell surface components implicated as attachment sites for the pneumococcal competence activator.. In Modern Trends in Bacterial Transformation and Transfection pp. 11–34 Portoles A., Lopez R., Espinosa M. Edited by Amsterdam: Elsevier/North Holland;
    [Google Scholar]
  10. Kakinuma Y., Harold F.M. 1985; ATP-driven exchange of Na+ and K+ ions by Streptococcus faecalis.. Journal of Biological Chemistry 260:2086–2091
    [Google Scholar]
  11. Kobayashi H., Murakami N., Unemoto T. 1982; Regulation of the cytoplasmic pH in Streptococcus faecalis.. Journal of Biological Chemistry 257:13246–13252
    [Google Scholar]
  12. Kohoutova M. 1973; The mechanism of binding of the competence substance to the surface of noncompetent cells in pneumococcus.. In Bacterial Transformation pp. 89–112 Archer L. J. Edited by London: Academic Press;
    [Google Scholar]
  13. Kroll R.G., Booth I.R. 1981; The role of potassium transport in the generation of a pH gradient in Escherichia coli.. Biochemical Journal 198:691–698
    [Google Scholar]
  14. Lachmann H., Schnackerz K.D. 1984; 31P nuclear magnetic resonance titrations: simultaneous evaluation of all pH-dependent resonance signals.. Organic Magnetic Resonance 22:101–105
    [Google Scholar]
  15. Laimins L.A., Rhoads D.B., Epstein W. 1981; Osmotic control of kdp operon expression in Escherichia coli.. Proceedings of the National Academy of Sciences of the United States of America 78:464–468
    [Google Scholar]
  16. Lazlo P. 1978; Sodium-23 nuclear magnetic resonance spectroscopy.. Angewandte Chemie (International English Edition) 17:254–266
    [Google Scholar]
  17. Leonard C.G., Cole R.M. 1972; Purification and properties of streptococcal competence factor isolated from chemically defined medium.. Journal of Bacteriology 110:273–280
    [Google Scholar]
  18. Love P.E., Yasbin R.E. 1986; Induction of the Bacillus subtilis SOS-like response by Escherichia coli RecA protein.. Proceedings of the National Academy of Sciences of the United States of America 83:5204–5208
    [Google Scholar]
  19. Metcalfe J.C., Hesketh T.R., Smith G.A., Morris J.D.H., Corps A.N., Moore J.P. 1985; Early response pattern analysis of the mitogenic pathway in lymphocytes and fibroblasts.. Journal of Cell Science supplements 3:199–228
    [Google Scholar]
  20. Meury J., Kepes A. 1981; The regulation of potassium fluxes for the adjustment and maintenance of potassium levels in Escherichia coli.. European Journal of Biochemistry 119:165–170
    [Google Scholar]
  21. Moolenar W.H., Tsien R.Y., Vandersaag P.T., Delaat S.W. 1983; Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts.. Nature, London 304:645–648
    [Google Scholar]
  22. Moore R.D., Fidelman M.L., Seeholzer S.H. 1979; Correlation between insulin action upon glycolysis and change in intracellular pH.. Biochemical and Biophysical Research Communications 91:905–910
    [Google Scholar]
  23. Morrison D.A., Trombe M.C., Hayden M.K., Waszak G.A., Chen J.D. 1984; Isolation of transformation-deficient Streptococcus pneumoniae mutants defective in control of competence, using insertion-duplication mutagenesis with the erythromycin resistance determinant of pAM β1.. Journal of Bacteriology 159:870–876
    [Google Scholar]
  24. Nicolay K., Kaptein R., Hellingwerf K.J., Konings W.N. 1981; 31P nuclear magnetic resonance studies of energy transduction in Rhodo- pseudomonas sphaeroides.. European Journal of Biochemistry 116:191–197
    [Google Scholar]
  25. Ogawa S., Boens C.C., Lee T.M. 1981; A 31P nuclear magnetic resonance study of the pH gradient and the inorganic phosphate distribution across the membrane in intact rat liver mitochondria.. Archives of Biochemistry and Biophysics 210:740–747
    [Google Scholar]
  26. Pakula R., Walczak W. 1963; On the nature of competence of transformable streptococci.. Journal of General Microbiology 31:125–133
    [Google Scholar]
  27. Paris S., Pouysségur J. 1984; Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+.. Journal of Biological Chemistry 259:10989–10994
    [Google Scholar]
  28. Plack R.H.Jr Rosen B.P. 1980; Cation/proton antiport systems in Escherichia coli. Absence of potassium/proton antiporter activity in a pH-sensi- tive mutant.. Journal of Biological Chemistry 255:3824–3825
    [Google Scholar]
  29. Rosen B.P. 1987; Bacterial calcium transport.. Biochimica et biophysica acta 906:101–110
    [Google Scholar]
  30. Rozengurt E. 1980; Stimulation of DNA synthesis in quiescent cultured cells: exogenous agents, internal signals, and early events.. Current Topics in Cellular Regulation 17:59–88
    [Google Scholar]
  31. Schuldiner S., Rozengurt E. 1982; Na+/H+ antiport in Swiss 3T3 cells: mitogenic stimulation leads to cytoplasmic alkalinization.. Proceedings of the National Academy of Sciences of the United States of America 79:7778–7782
    [Google Scholar]
  32. Schultz S.G., Solomon A.K. 1961; Cation transport in Escherichia coli. Intracellular Na+ and K+ concentrations and net cation movement.. Journal of General Physiology 45:355–369
    [Google Scholar]
  33. Slonczewski J.L., Rosen B.P., Alger J.R., Macnab R.M. 1981; pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate.. Proceedings of the National Academy of Sciences of the United States of America 78:6271–6275
    [Google Scholar]
  34. Tomasz A. 1969; The competent state in genetic transformation.. Annual Review of Genetics 3:217–232
    [Google Scholar]
  35. Tomasz A., Hotchkiss R.D. 1964; Regulation of the transformability of pneumococcal cultures by macromolecular cell products.. Proceedings of the National Academy of Sciences of the United States of America 51:480–487
    [Google Scholar]
  36. Tomasz A., Mosser J.L. 1966; On the nature of the pneumococcal activator substance.. Proceedings of the National Academy of Sciences of the United States of America 55:58–66
    [Google Scholar]
  37. Trombe M.C. 1983; Alteration du transport actif des acides amines au moment de la competence chez Streptococcus pneumoniae.. Comptes Rendus de I’Aca- demie des Sciences, Sciences de la Vie 297:42–44
    [Google Scholar]
  38. Trombe M.C., Lanéelle G., Sicard A.M. 1984; Characterization of a Streptococcus pneumoniae mutant with altered electric transmembrane potential.. Journal of Bacteriology 158:1109–1114
    [Google Scholar]
  39. West I.C., Mitchell P. 1974; Proton/sodium ion antiport in Escherichia coli.. Biochemical Journal 144:87–90
    [Google Scholar]
  40. Ziegler R., Tomasz A. 1970; Binding of the competence factor to receptors in the spheroplast membrane of pneumococci.. Biochemical and Biophysical Research Communications 41:1342–1349
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-8-2189
Loading
/content/journal/micro/10.1099/00221287-135-8-2189
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error