1887

Abstract

Cell-free extracts of eighteen fermentative and nonfermentative Mollicutes were examined for enzyme activities associated with the hexose monophosphate shunt (HMS) and Embden---Meyerhof---Parnas (EMP) pathway. All spp. had glucose-6-phosphate (G6P) dehydrogenase (EC 1.1.1.49), 6-phosphogluconate (6PG) dehydrogenase (EC 1.1.1.44) and hexokinase (EC 2.7.1.1) activity. Of these three enzyme activities, hexokinase was also detected in sp. Let. 1 but in no other fermentative or nonfermentative spp. The and fermentative spp. possessed all other HMS and EMP activities examined. All spp. possessed a pyrophosphate (PP)-dependent phosphofructokinase (PFK) (EC 2.7.1.90) while fermentative spp. possessed an ATP-dependent PFK (EC 2.7.1.11). Transaldolase (EC 2.2.1.2) activity was detected in some, but not all and fermentative spp. 2-Deoxyribose-5-phosphate aldolase (EC 4.1.2.4) activity was present in all mollicute extracts tested except for and sp. Let. 1. The two nonfermentative spp. lacked all enzyme activities of the HMS pathway except for ribulose-5-phosphate epimerase activity, and of the EMP pathway only phosphoglucose isomerase and the enzymes converting glyceraldehyde 3-phosphate (G3P) to phosphoenolpyruvate (PEP) were detected. We believe that the three major observations of this study are: (1) all spp. lack G6P and 6PG dehydrogenase activities, suggesting a reduction in their NADPH pool, which may relate to the lipid growth requirement of this genus; (2) the fermentative spp. have an ATP-dependent PFK activity, while the fermentative spp. have a PP-dependent PFK activity; and (3) the nonfermentative spp. lack ATP and PP-dependent PFK and fructose-1,6-bisphosphate aldolase activities but, like the fermentative Mollicutes, can convert three-carbon compounds, G3P to PEP through the three-carbon arm of the EMP pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-3-683
1989-03-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/3/mic-135-3-683.html?itemId=/content/journal/micro/10.1099/00221287-135-3-683&mimeType=html&fmt=ahah

References

  1. Atobe H., Watabe J., Ogata M. 1983; Acholeplasma parvum, a new species from horses. International Journal of Systematic Bacteriology 33:344–349
    [Google Scholar]
  2. Beaman K. D., Pollack J. D. 1981; Adenylate energy charge in Acholeplasma laidlawii . Journal of Bacteriology 146:1055–1058
    [Google Scholar]
  3. Beaman K. D., Pollack J. D. 1983; Synthesis of adenylate nucleotides by Mollicutes (mycoplasmas). Journal of General Microbiology 129:3103–3110
    [Google Scholar]
  4. Berry A., Ahmad S., Liss A., Jensen R. A. 1987; Enzymological features of aromatic amino acid biosynthesis reflect the phylogeny of mycoplasmas. Journal of General Microbiology 133:2147–2154
    [Google Scholar]
  5. Bucher T. 1955; Phosphoglycerate kinase from brewer’s yeast. Methods in Enzymology 1:415–422
    [Google Scholar]
  6. Castrejon-Diez J., Fisher T. N., Fisher E. Jr 1963; Glucose metabolism of two strains of Mycoplasma laidlawii . Journal of Bacteriology 86:627–636
    [Google Scholar]
  7. Chou A. C., Wilson J. E. 1975; Elexokinase from rat brain. Methods in Enzymology 42:20–25
    [Google Scholar]
  8. Cocks B. G., Brake F. A., Mitchell A., Finch L. R. 1985; Enzymes of intermediary carbohydrate metabolism in Ureaplasma urealyticum and Mycoplasma mycoides subsp. mycoides . Journal of General Microbiology 131:2129–2135
    [Google Scholar]
  9. Demoss R. D. 1955; Glucose-6-phosphate and 6- phosphogluconate dehydrogenases from Leuconostoc mesenteroides . Methods in Enzymology 1:328–334
    [Google Scholar]
  10. Fothergill-Gilmore L. A. 1986; Domains of glycolytic enzymes. In Multidomain Proteins - Structure and Evolution pp. 85–174 Hardie D. G., Coggins J. R. Edited by Amsterdam: Elsevier Science Publishers;
    [Google Scholar]
  11. Friis N. F. 1975; Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare: a survey. Veterinaerme- dicin 27:337–339
    [Google Scholar]
  12. Gracy R. W., Tilley B. E. 1975; Phosphoglucose isomerase of human erythrocytes and cardiac tissue. Methods in Enzymology 41:392–400
    [Google Scholar]
  13. Horecker B. L., Smyrniotis P. Z. 1955; Transaldolase. Methods in Enzymology 1:381–383
    [Google Scholar]
  14. Horecker B. L., Hurwitz J., Stumpf F. K. 1957; The enzymatic synthesis of ribulose-1,5-diphosphate and xylulose-5-phosphate. Methods in Enzymology 3:193–195
    [Google Scholar]
  15. Kawauchi Y., Muto A., Osawa C. 1982; The protein composition of Mycoplasma capricolum . Molecular and General Genetics 188:7–11
    [Google Scholar]
  16. Kochetov G. A. 1982; Transketolase from yeast. Methods in Enzymology 90:209–223
    [Google Scholar]
  17. Krebs E. G. 1955; Glyceraldehyde-3-phosphate dehydrogenase from yeast. Methods in Enzymology 1:407–411
    [Google Scholar]
  18. Lanham S. M., Lemcke R. M., Scott C. M., Grendon J. M. 1980; Isoenzymes in two species of Acholeplasma . Journal of General Microbiology 117:19–31
    [Google Scholar]
  19. Ling K. -H., Byrne W. L., Lardy H. 1955; Phosphohexokinase. Methods in Enzymology 1:306–310
    [Google Scholar]
  20. Mcelwain M. C., Pollack J. D. 1987; Synthesis of deoxyribomononucleotides in Mollicutes: dependence on deoxyribose-1-phosphate and PP1 . Journal of Bacteriology 169:3647–3653
    [Google Scholar]
  21. Manolukas J. T., Barile M. F., Chandler D. K. F., Pollack J. D. 1988; Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in Mollicutes. Journal of General Microbiology 134:791–800
    [Google Scholar]
  22. Mitchell A., Finch L. R. 1977; Pathways of nucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides . Journal of Bacteriology 130:1047–1054
    [Google Scholar]
  23. Mitchell A., Finch L. R. 1979; Enzymes of pyrimidine metabolism in Mycoplasma mycoides subsp. mycoides . Journal of Bacteriology 137:1073–1080
    [Google Scholar]
  24. Morse S. A., Stein S., Hines J. 1974; Glucose metabolism in Neisseria gonorrheae . Journal of Bacteriology 120:702–714
    [Google Scholar]
  25. Neale G. A. M., Mitchell A., Finch L. R. 1983; Pathways of pyrimidine deoxyribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides . Journal of Bacteriology 154:17–22
    [Google Scholar]
  26. O’Brien S. J., Simonsen J. M., Grabowski M. W., Barile M. F. 1981; Analysis of multiple isozyme expression among twenty-two species of Mycoplasma and Acholeplasma . Journal of Bacteriology 146:222–232
    [Google Scholar]
  27. Pollack J. D. 1975; Localization of reduced nicotinamide adenine dinucleotide oxidase activity in Acholeplasma and Mycoplasma species. International Journal of Systematic Bacteriology 25:108–113
    [Google Scholar]
  28. Pollack J. D., Hoffmann P. J. 1982; Properties of the nucleases of Mollicutes. Journal of Bacteriology 152:538–541
    [Google Scholar]
  29. Pollack J. D., Williams M. V. 1986; PP1-dependent phosphofructotransferase (phosphofruc- tokinase) activity in the Mollicute (Mycoplasma) Acholeplasma laidlawii . Journal of Bacteriology 165:53–60
    [Google Scholar]
  30. Pollack J. D., Razin S., Cleverdon R. C. 1965; Localization of enzymes in Mycoplasma . Journal of Bacteriology 90:617–622
    [Google Scholar]
  31. Racker E. 1955; Deoxyribose phosphate aldolase (dr-aldolase). Methods in Enzymology 1:384–386
    [Google Scholar]
  32. Reeves R. E., Lobelle-Rich P., Eubank W. B. 1982; 6-Phosphofructokinase (pyrophosphate) from Entamoeba histolytica . Methods in Enzymology 90:97–102
    [Google Scholar]
  33. Rodwell A. W. 1960; Nutrition and metabolism of Mycoplasma mycoides, subsp. mycoides . Annals of the New York Academy of Sciences 79:499–507
    [Google Scholar]
  34. Rodwell A. W., Rodwell E. S. 1954; The breakdown of carbohydrates by Asterococcus mycoides, the organisms of bovine pleuropneumonia. Australian Journal of Biological Science 7:18–30
    [Google Scholar]
  35. Rodwell A. W., Mitchell A. 1979; Nutrition, growth and reproduction. In The Mycoplasmas 1 pp. 103–136 Barile M. F., Razin S. Edited by London: Academic Press;
    [Google Scholar]
  36. Salih M. M., Simonsen V., ErnØ H. 1983; Electrophoretic analysis of isozymes of Acholeplasma species. International Journal of Systematic Bacteriology 33:166–172
    [Google Scholar]
  37. Taylor J. F. 1955; Aldolase from muscle. Methods in Enzymology 1:310–315
    [Google Scholar]
  38. Tully J. G., Razin S. 1977; The mollicutes. In CRC Handbook of Microbiology 1 pp. 405–459 Laskin A. I., Lechavalier H. A. Edited by Cleveland, Ohio: CRC Press;
    [Google Scholar]
  39. Venkataraman R., Racker E. 1961; Mechanism of action of transaldolase I. Crystallization and properties of the yeast enzyme. Journal of Biological Chemistry 236:1876–1882
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-3-683
Loading
/content/journal/micro/10.1099/00221287-135-3-683
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error